Introduction to the Course

311116030 DSA, Sichuan University
Hao Wang

@ CS311, Hao Wang, SCU

W
W
W

Course overview

nat is this course all about?
nat are data structures?

nat is an algorithm?

Example: Peak Finding

@ CS311, Ha

o Wang, SCU

About this course

= What are programs made of?

E Programs = Data Structures + Algorithms]

@ CS311, Hao Wang, SCU

About this course

This course covers:

Data structures for efficiently storing, accessing,
and modifying data

Algorithms for solving problems efficiently.

In a nutshell,

Binary relation from problem inputs to correct
outputs

Algorithms

Input data — (Compiler)

— Output data

(@ CS311, Hao Wang, SCU

About this course

Algorithms

Input data — (Compiler)

Inputs

Not general: small input instance

E.g., In this room, is there a pair of students with same
birthday?

General: arbitrarily large inputs
E.g., Given any set of n, is there a pair of students with

same birthday?
Outputs
Usually don'’t specify every correct output for all
inputs (too many!)
Provide a verifiable predicate (a property) that
correct outputs must satisfy (‘= same’).

— Qutput data

(@ CS311, Hao Wang, SCU

About this course

Many approaches and technologies, how do
we choose between them.

To design an algorithm that is easy to understand,
code and debug. (No!)

To design an algorithm that makes efficient use
of the computers. (Yes!)

We mostly talk about the second realm in this
course.

@ CS311, Hao Wang, SCU 6

About this course

A solution is said to be efficient if it solves
the problem within its resource constraints.
Space
Time
The cost of a solution is the amount of
resources that the solution consumes.

The different choices can have huge
differences in running cost.

sequential search (~s) vs. binary search (~d).

@ CS311, Hao Wang, SCU

Data Structures

Data structures organize data
to support and ground more efficient programs.

A data structure is an implementation for an
Abstract Data Type (ADT) .

An ADT is the realization of a data type, that
supports a set of operations.
A collection of operations is called an interface

Sequence: Extrinsic order to items (first, last, nth)
Set: Intrinsic order to items (queries based on item keys)

(@ CS311, Hao Wang, SCU 8

| Abstract Data Type

Each ADT operation is defined by its inputs
and outputs.

Encapsulation: hidden from the user of the ADT.

An ADT handle complexity through the use of
abstraction: metaphor.

Hierararchy of labels

E.g., hard_drive -> CPU -> computer.
In @ program, implement an ADT, then think
only about the ADT, not its implementation.

@ CS311, Hao Wang, SCU

‘ Example 1.8: a simple database system

A typical database-style project would have a
lot of interactive and recursive parts.

Index

Memory
Manager

&

-l

Buffer

Pool

A program such as this:
e too complex for human programmer to handle all at once.
e 1mplemented through use of abstraction and metaphors.

@ CS311, Hao Wang, SCU

Data Structures Philosophy

Each data structure has costs and benefits.

It is hardly ever true that one data structure is
better than another for use in all situations.
(No Free Lunch for both costs and benefits)

A data structure requires:
space for each data item it stores,
time to perform each basic operation,
programming effort.

(@ CS311, Hao Wang, SCU 11

‘ Data Structures Philosophy (cont'd)

Each problem has constraints on available
space and time.

Only after a thorough analysis of problem
characteristics can we determine the best
data structure for the task.

Bank example:
Start account: a few minutes
Transactions: a few seconds
Close account: overnight

@ CS311, Hao Wang, SCU

‘ Data Structures Philosophy (cont'd)

Data structures may implement the same
interface with different performance

e.g., an interface for items to order
can use a stack, queue, circular array, etc.

Data structure (DS) vs. File structure (FS)

DS usually refers to an organization for data in
main memory.

FS is an organization for data on peripheral
storage, such as a disk drive.

@ CS311, Hao Wang, SCU

‘ Data Structures -- Logical vs. Physical

Data items have both a logical and a
physical form.

Logical form: definition of the data item within
an ADT.

E.g., Integers in mathematical sense: +, -

Physical form: implementation of the data
item within a data structure.

E.g., 16/32 bit integers, overflow.

@ CS311, Hao Wang, SCU

‘ The relationship

Data Type
ADTI':ype Data ltems:
Operations Logical Form

Data Structure:
Storage Space
Subroutines

Data ltems:
Physical Form

(@ CS311, Hao Wang,

SCU

15

‘ To selecting a data structure

A three-step approach:

Analyze the problem to determine the basic
operations that must be supported.

Quantify the resource constraints for each
operation.

Select the data structure that best meets
these requirements. ("simplest")

@ CS311, Hao Wang, SCU

‘ When choosing a data structure

Ask yourself three questions:

Are all data items inserted into the data
structure at the beginning, or are insertions
interspersed with other operations?

Can data items be deleted?

Are all items processed in some well-defined
order, or is search for specific data items
allowed?

@ CS311, Hao Wang, SCU

Birthday matching

[* use array */
int birthdays[50]

[* Class encapsulation in C++ */
class student{
public:

int birthdays[50];

@ CS311, Hao Wang, SCU

18

Algorithms

Al-Khwarizmi “al-kha-raz-mi” (c. 780-850)
“father of algebra” with his book “The

Compendious Book on Calculation by Completion
& Balancing”

linear & quadratic equation solving: some of the
first algorithms.

(@ CS311, Hao Wang, SCU 19

http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi

Algorithms

What is an Algorithm?

Mathematical abstraction of computer program
Computational procedure to solve a problem

ahalog
rogram [€> lgorith
Q PTo9 _ agorm built on
programming docod top of
Q language <—)| pseudocode l P
model of
t <—>
OMPHEE computation

@ CS311, Hao Wang, SCU -

An example algorithm

An algorithm to solve birthday matching

Maintain a record of names and birthdays (initially
empty)
Interview each student in some order

If birthday exists in record, return found pair!

Else add name and birthday to record

Return None if last student interviewed without
SUCCess

(@ CS311, Hao Wang, SCU 21

Birthday matching — a case

#include <cstdlib>
#include <iostream>
using namespace std;
int main()
{
int birthdays[50] // array
bool matched = False;
for(int i=1; i<60-1; i++)
{
for(int j=i+1; j<80; j++)
if(birthdays[i] == birthdaysJj])
matched = True;
count << "True!" << end];
return;

}
}

(@ CS311, Hao Wang, SCU

22

Algorithms -- correctness

Programs/algorithms have fixed size, so how
to prove correct?

For small inputs, can use case analysis

For arbitrarily large inputs, algorithms must
be recursive or loop in some way

use induction (why recursion is such a key
concept in computer science)

@ CS311, Hao Wang, SCU

Prooft of correctness of birthday
matching algorithm

Induct on k: the number of students in record

Hypothesis: if first k contain match, returns match before
interviewing student k + 1

Base case: k = 0, first kK contains no match

Assume for induction hypothesis holds for k = k', and
considerk =k' + 1

If first k' contains a match, already returned a match by
Induction

Else first k' do not have match, so if first k' + 1 has match,
match contains k' + 1

Then algorithm checks directly weather birthday of student
k' + 1 exists in first k' O]

@ CS311, Hao Wang, SCU

Algorithms - efficiency

How fast does an algorithm?
Could measure time

ldea! Count number of fixed-time operations
algorithms takes to return

Expect to depend on size of input
Size of input is often called 'n', but not always!
Efficient if return in polynomial time w.r.t. input

Sometimes no efficient algorithm exists for a
problem!

@ CS311, Hao Wang, SCU

Algorithms — efficiency (cont'd)

Asymptotic Notation: ignore constant factors
and low order terms

Upper bounds (0)

€, =, IS, order

constant

logarithmic

linear

log-linear

quadratic

polynomial

exponential

o(1)

O(logn)

O(n)

O(n logn)

O(n?)

O(n°)

90 (n°)

Running time analysis: birthday matching

Two loops: outer k € {0,...,n— 1}, innerisi € {0, ..., k}
Running time is 0(n) + ¥?23(0(1) + k- 0(1)) = 0(n?)
Quadratic in n is polynomial. Could be more efficient?

@ CS311, Hao Wang, SCU

26

‘ To solving an algorithms problem

A two-step approach

Reduce to a problem you already know (use

data structure or algorithm)
Search, sort, shortest path algorithms

Design your own (recursive) algorithm
Brute Force
Decrease and Conquer
Divide and Conquer
Dynamic Programming
Greedy / Incremental

@ CS311, Hao Wang, SCU

‘ Problems vs. algorithms vs. programs

Problem: a task to be performed
Best though of as inputs and matching outputs
e.g., sort a set of numbers

Problem definition should include constraints on
the resources that may be consumed by any
acceptable solution

@ CS311, Hao Wang, SCU 28

Problems (cont'd)

Problems < Mathematical functions

A function is a matching between inputs (the domain)
and outputs (the range)

An input to a function may be single number, or a
collection of information.

The values making up an input are called the
parameters of the function.

A particular input mush always result in the same
output every time the function is computed.

Math. functions is not exactly the same to
computer programs.

@ CS311, Hao Wang, SCU

‘ Algorithms and Programs

Algorithm: a method or a process followed to
solve a problem.

A recipe.

An algorithm takes the input to a problem
(function) and transforms it to the output.

A mapping of input to output.

A problem can have many algorithms.

@ CS311, Hao Wang, SCU

Algorithm Properties

An algorithm has the following five properties:
It must be correct.
It must be composed of a series of concrete steps.

There can be no ambiguity as to which step will be
performed next.

It must be composed a finite number of steps.
It must terminate.

A computer program is an instance, or concrete
representation, for an algorithm in some
programming language.

(@ CS311, Hao Wang, SCU 31

Venn diagram

Problem

Input data —

Algorithms
(Compiler)

— QOutput data

@ CS311, Hao Wang, SCU

32

Conclusion

Course overview

Syllabus
Abstract data type, Data structures
Problems, Algorithms, Programs

An example: birthday matching

Think and solve birthday matching problem with more
efficient algorithms

Take-home-messages
Philosophy of abstraction
Simple but not simpler

(@ CS311, Hao Wang, SCU 33

Peak Finder

Position 2 is a peak ifand only if b > a and b > c. Position 9 is a peak if i > h.

1 2 3 4 5 6 7 8 9

a b c d e f g h i

A case 6 7 4 3 2 2 0 4 5

Problem: Find a peak if it exists (Doe it always exists?)

1 2 n/2 n-1 n

@ CS311, Hao Wang, SCU .

‘ Next week

= Math prelims (Chapter I. 2)
o Set
- Relations
- Functions

@ CS311, Hao Wang, SCU

35

	Slide 1: Introduction to the Course
	Slide 2: Course overview
	Slide 3: About this course
	Slide 4: About this course
	Slide 5: About this course
	Slide 6: About this course
	Slide 7: About this course
	Slide 8: Data Structures
	Slide 9: Abstract Data Type
	Slide 10: Example 1.8: a simple database system
	Slide 11: Data Structures Philosophy
	Slide 12: Data Structures Philosophy (cont'd)
	Slide 13: Data Structures Philosophy (cont'd)
	Slide 14: Data Structures -- Logical vs. Physical
	Slide 15: The relationship
	Slide 16: To selecting a data structure
	Slide 17: When choosing a data structure
	Slide 18: Birthday matching
	Slide 19: Algorithms
	Slide 20: Algorithms
	Slide 21: An example algorithm
	Slide 22: Birthday matching – a case
	Slide 23: Algorithms -- correctness
	Slide 24: Proof of correctness of birthday matching algorithm
	Slide 25: Algorithms - efficiency
	Slide 26: Algorithms – efficiency (cont'd)
	Slide 27: To solving an algorithms problem
	Slide 28: Problems vs. algorithms vs. programs
	Slide 29: Problems (cont'd)
	Slide 30: Algorithms and Programs
	Slide 31: Algorithm Properties
	Slide 32: Venn diagram
	Slide 33: Conclusion
	Slide 34: Peak Finder
	Slide 35: Next week

