
@ CS311, Hao Wang, SCU

Introduction to the Course

311116030 DSA, Sichuan University

Hao Wang

1

@ CS311, Hao Wang, SCU

Course overview

▪ What is this course all about?

▪ What are data structures?

▪ What is an algorithm?

▪ Example: Peak Finding

2

@ CS311, Hao Wang, SCU

About this course

▪ What are programs made of?

3

Programs = Data Structures + Algorithms

@ CS311, Hao Wang, SCU

About this course

▪ This course covers:

❑ Data structures for efficiently storing, accessing,

and modifying data

❑ Algorithms for solving problems efficiently.

▪ In a nutshell,

❑ Binary relation from problem inputs to correct

outputs

4

Input data
Algorithms

(Compiler)
Output data

@ CS311, Hao Wang, SCU

About this course

▪ Inputs
❑ Not general: small input instance
 E.g., In this room, is there a pair of students with same

birthday?

❑ General: arbitrarily large inputs
 E.g., Given any set of 𝑛, is there a pair of students with

same birthday?

▪ Outputs
❑ Usually don’t specify every correct output for all

inputs (too many!)
❑ Provide a verifiable predicate (a property) that

correct outputs must satisfy (‘= same’).

5

Input data
Algorithms

(Compiler)
Output data

@ CS311, Hao Wang, SCU

About this course

▪ Many approaches and technologies, how do

we choose between them.

❑ To design an algorithm that is easy to understand,

code and debug. (No!)

❑ To design an algorithm that makes efficient use
of the computers. (Yes!)

▪ We mostly talk about the second realm in this

course.

6

@ CS311, Hao Wang, SCU

About this course

▪ A solution is said to be efficient if it solves

the problem within its resource constraints.

❑ Space

❑ Time

▪ The cost of a solution is the amount of

resources that the solution consumes.

▪ The different choices can have huge

differences in running cost.

❑ sequential search (~s) vs. binary search (~d).

7

@ CS311, Hao Wang, SCU

Data Structures

▪ Data structures organize data

❑ to support and ground more efficient programs.

▪ A data structure is an implementation for an

Abstract Data Type (ADT) .

❑ An ADT is the realization of a data type, that
supports a set of operations.

❑ A collection of operations is called an interface

 Sequence: Extrinsic order to items (first, last, 𝑛th)

 Set: Intrinsic order to items (queries based on item keys)

8

@ CS311, Hao Wang, SCU

Abstract Data Type

▪ Each ADT operation is defined by its inputs

and outputs.

❑ Encapsulation: hidden from the user of the ADT.

▪ An ADT handle complexity through the use of

abstraction: metaphor.

❑ Hierararchy of labels

❑ E.g., hard_drive -> CPU -> computer.

▪ In a program, implement an ADT, then think

only about the ADT, not its implementation.

9

@ CS311, Hao Wang, SCU

Example 1.8: a simple database system

▪ A typical database-style project would have a

lot of interactive and recursive parts.

10

A program such as this:

⚫ too complex for human programmer to handle all at once.

⚫ implemented through use of abstraction and metaphors.

@ CS311, Hao Wang, SCU

Data Structures Philosophy

▪ Each data structure has costs and benefits.

▪ It is hardly ever true that one data structure is

better than another for use in all situations.

(No Free Lunch for both costs and benefits)

▪ A data structure requires:

❑ space for each data item it stores,

❑ time to perform each basic operation,

❑ programming effort.

11

@ CS311, Hao Wang, SCU

Data Structures Philosophy (cont'd)

▪ Each problem has constraints on available

space and time.

▪ Only after a thorough analysis of problem

characteristics can we determine the best

data structure for the task.

▪ Bank example:
 Start account: a few minutes

 Transactions: a few seconds

 Close account: overnight

12

@ CS311, Hao Wang, SCU

Data Structures Philosophy (cont'd)

▪ Data structures may implement the same

interface with different performance

❑ e.g., an interface for items to order

 can use a stack, queue, circular array, etc.

▪ Data structure (DS) vs. File structure (FS)

❑ DS usually refers to an organization for data in

main memory.

❑ FS is an organization for data on peripheral
storage, such as a disk drive.

13

@ CS311, Hao Wang, SCU

Data Structures -- Logical vs. Physical

▪ Data items have both a logical and a

physical form.

▪ Logical form: definition of the data item within

an ADT.

❑ E.g., Integers in mathematical sense: +, -

▪ Physical form: implementation of the data

item within a data structure.

❑ E.g., 16/32 bit integers, overflow.

14

@ CS311, Hao Wang, SCU

The relationship

15

Data Type

ADT:

Type

Operations

Data Items:

Logical Form

Data Items:

Physical Form

Data Structure:

Storage Space

Subroutines

@ CS311, Hao Wang, SCU

To selecting a data structure

A three-step approach:

1. Analyze the problem to determine the basic

operations that must be supported.

2. Quantify the resource constraints for each

operation.

3. Select the data structure that best meets

these requirements. ("simplest")

16

@ CS311, Hao Wang, SCU

When choosing a data structure

Ask yourself three questions:

1. Are all data items inserted into the data

structure at the beginning, or are insertions

interspersed with other operations?

2. Can data items be deleted?

3. Are all items processed in some well-defined

order, or is search for specific data items

allowed?

17

@ CS311, Hao Wang, SCU

Birthday matching

18

/* use array */

int birthdays[50]

/* Class encapsulation in C++ */

class student{

public:

int birthdays[50];

}

@ CS311, Hao Wang, SCU

Algorithms

▪ Al-Khwārizmī “al-kha-raz-mi” (c. 780-850)

❑ “father of algebra” with his book “The

Compendious Book on Calculation by Completion
& Balancing”

❑ linear & quadratic equation solving: some of the

first algorithms.

19

http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi
http://en.wikipedia.org/wiki/Al-Khwarizmi

@ CS311, Hao Wang, SCU

Algorithms

▪ What is an Algorithm?

❑ Mathematical abstraction of computer program

❑ Computational procedure to solve a problem

20

@ CS311, Hao Wang, SCU

An example algorithm

▪ An algorithm to solve birthday matching

❑ Maintain a record of names and birthdays (initially

empty)

❑ Interview each student in some order

 If birthday exists in record, return found pair!

 Else add name and birthday to record

❑ Return None if last student interviewed without

success

21

@ CS311, Hao Wang, SCU

Birthday matching – a case

22

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

int birthdays[50] // array

bool matched = False;

for(int i=1; i<50-1; i++)

{

for(int j=i+1; j<50; j++)

if(birthdays[i] == birthdays[j])

matched = True;

count << "True!" << endl;

return;

}

}

@ CS311, Hao Wang, SCU

Algorithms -- correctness

▪ Programs/algorithms have fixed size, so how

to prove correct?

▪ For small inputs, can use case analysis

▪ For arbitrarily large inputs, algorithms must

be recursive or loop in some way

❑ use induction (why recursion is such a key

concept in computer science)

23

@ CS311, Hao Wang, SCU

Proof of correctness of birthday
matching algorithm

▪ Induct on 𝑘: the number of students in record

▪ Hypothesis: if first 𝑘 contain match, returns match before

interviewing student 𝑘 + 1

▪ Base case: 𝑘 = 0, first 𝑘 contains no match

▪ Assume for induction hypothesis holds for 𝑘 = 𝑘′, and

consider 𝑘 = 𝑘′ + 1

▪ If first 𝑘′ contains a match, already returned a match by

induction

▪ Else first 𝑘′ do not have match, so if first 𝑘′ + 1 has match,

match contains 𝑘′ + 1

▪ Then algorithm checks directly weather birthday of student

𝑘′ + 1 exists in first 𝑘′

24

@ CS311, Hao Wang, SCU

Algorithms - efficiency

▪ How fast does an algorithm?

❑ Could measure time

❑ Idea! Count number of fixed-time operations

algorithms takes to return

❑ Expect to depend on size of input

❑ Size of input is often called '𝑛', but not always!

❑ Efficient if return in polynomial time w.r.t. input

❑ Sometimes no efficient algorithm exists for a

problem!

25

@ CS311, Hao Wang, SCU

Algorithms – efficiency (cont'd)

▪ Asymptotic Notation: ignore constant factors

and low order terms

❑ Upper bounds (𝑂) ∈, =, is, order

▪ Running time analysis: birthday matching

❑ Two loops: outer 𝑘 ∈ {0,… , 𝑛 − 1}, inner is 𝑖 ∈ {0, … , 𝑘}

❑ Running time is 𝑂 𝑛 + σ𝑘=0
𝑛−1 𝑂 1 + 𝑘 ∙ 𝑂 1 = 𝑂(𝑛2)

❑ Quadratic in 𝑛 is polynomial. Could be more efficient?

26

@ CS311, Hao Wang, SCU

To solving an algorithms problem

A two-step approach

1. Reduce to a problem you already know (use

data structure or algorithm)
◼ Search, sort, shortest path algorithms

2. Design your own (recursive) algorithm
◼ Brute Force

◼ Decrease and Conquer

◼ Divide and Conquer

◼ Dynamic Programming

◼ Greedy / Incremental

27

@ CS311, Hao Wang, SCU

Problems vs. algorithms vs. programs

▪ Problem: a task to be performed

❑ Best though of as inputs and matching outputs

❑ e.g., sort a set of numbers

❑ Problem definition should include constraints on
the resources that may be consumed by any

acceptable solution

28

@ CS311, Hao Wang, SCU

Problems (cont'd)

▪ Problems  Mathematical functions

❑ A function is a matching between inputs (the domain)

and outputs (the range)

❑ An input to a function may be single number, or a

collection of information.

❑ The values making up an input are called the

parameters of the function.

❑ A particular input mush always result in the same

output every time the function is computed.

▪ Math. functions is not exactly the same to

computer programs.

29

@ CS311, Hao Wang, SCU

Algorithms and Programs

▪ Algorithm: a method or a process followed to

solve a problem.

❑ A recipe.

▪ An algorithm takes the input to a problem

(function) and transforms it to the output.

❑ A mapping of input to output.

▪ A problem can have many algorithms.

30

@ CS311, Hao Wang, SCU

Algorithm Properties

▪ An algorithm has the following five properties:
❑ It must be correct.

❑ It must be composed of a series of concrete steps.

❑ There can be no ambiguity as to which step will be
performed next.

❑ It must be composed a finite number of steps.

❑ It must terminate.

▪ A computer program is an instance, or concrete

representation, for an algorithm in some

programming language.

31

@ CS311, Hao Wang, SCU

Venn diagram

32

Input data
Algorithms

(Compiler)
Output data

Problem

@ CS311, Hao Wang, SCU

Conclusion

▪ Course overview

❑ Syllabus

❑ Abstract data type, Data structures

❑ Problems, Algorithms, Programs

▪ An example: birthday matching

❑ Think and solve birthday matching problem with more

efficient algorithms

▪ Take-home-messages

❑ Philosophy of abstraction

❑ Simple but not simpler

33

@ CS311, Hao Wang, SCU

Peak Finder

a b c d e f g h i

34

1 2 3 4 5 6 7 8 9

Position 2 is a peak if and only if 𝑏 ≥ 𝑎 and 𝑏 ≥ 𝑐. Position 9 is a peak if 𝑖 ≥ ℎ.

Problem: Find a peak if it exists (Doe it always exists?)

1 2 … … n/2 … … n-1 n

6 7 4 3 2 2 0 4 5A case

@ CS311, Hao Wang, SCU

Next week

▪ Math prelims (Chapter I. 2)

❑ Set

❑ Relations

❑ Functions

35

	Slide 1: Introduction to the Course
	Slide 2: Course overview
	Slide 3: About this course
	Slide 4: About this course
	Slide 5: About this course
	Slide 6: About this course
	Slide 7: About this course
	Slide 8: Data Structures
	Slide 9: Abstract Data Type
	Slide 10: Example 1.8: a simple database system
	Slide 11: Data Structures Philosophy
	Slide 12: Data Structures Philosophy (cont'd)
	Slide 13: Data Structures Philosophy (cont'd)
	Slide 14: Data Structures -- Logical vs. Physical
	Slide 15: The relationship
	Slide 16: To selecting a data structure
	Slide 17: When choosing a data structure
	Slide 18: Birthday matching
	Slide 19: Algorithms
	Slide 20: Algorithms
	Slide 21: An example algorithm
	Slide 22: Birthday matching – a case
	Slide 23: Algorithms -- correctness
	Slide 24: Proof of correctness of birthday matching algorithm
	Slide 25: Algorithms - efficiency
	Slide 26: Algorithms – efficiency (cont'd)
	Slide 27: To solving an algorithms problem
	Slide 28: Problems vs. algorithms vs. programs
	Slide 29: Problems (cont'd)
	Slide 30: Algorithms and Programs
	Slide 31: Algorithm Properties
	Slide 32: Venn diagram
	Slide 33: Conclusion
	Slide 34: Peak Finder
	Slide 35: Next week

