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Motivation

▪ Purpose: Understanding the resouce 

requirements of an algorithm

❑ Time

❑ Memory

▪ Runing time analysis estimates the time 

required of an algorithm as a function of the 

input size. (upper and lower bounds)

▪ Usages:

❑ Estimate growth rate as input grows.

❑ Guide to choose between alternative algorithms.
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An example

▪ int sum(int set[], int n) {

int temsum, i;

tempsum = 1; /* step/execution 1 */

for (i=0; i<n; i++) /* step/execution n+1 */

tempsum +=set[i]; /* step/execution n */

return tempsum; /* step/execution 1 */

}

▪ Input size: n (number of array elements)

▪ Total number of steps: 2*n + 3
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Algorithm Efficiency

▪ There are often many approaches 
(algorithms) to solve a problem.  How do we 
choose between them?

▪ As the cores of computer program design, 
there are two (sometimes conflicting) goals.

1. To design an algorithm that is easy to 
understand, code, debug.

2. To design an algorithm that makes efficient use 
of the computer’s resources.
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Algorithm Efficiency (cont.)

▪ Goal (1) is the concern of Software 
Engineering.

▪ Goal (2) is the concern of data structures and 
algorithm analysis.

▪ When goal (2) is important, how do we 
measure an algorithm’s cost?
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Analysis and measurements

▪ Performance measurement (execution time): 

machine dependent.

▪ Performance analysis: machine 

independent. 

▪ How do we analyze a program independent 

of a machine?

❑ Counting the number steps.
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How to Measure Efficiency? 

▪ Empirical comparison (run programs)

▪ It is difficult to be `fair’ due to:

❑ Time consuming, especially when there are many 
alternative algorithms for a problem

❑ Depend on your programming skills

 One program may be finely tuned, while the other is not

❑ Depend on the computers running algorithms

 e.g., CPU, workload, etc.

❑ May vary for different test cases

 One program may favor some test cases
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How to Measure Efficiency? (cont.)

▪ Analytical method: asymptotic algorithm analysis

▪ Critical resources, factors affecting running time 
❑ Running time, space (memory or disk)

For most algorithms, running time depends on “size” 
of the input.

Running time is expressed as T(n) for some function 
T on input size n.

7



@ CS311, Hao Wang, SCU

How to Measure Efficiency? (cont.)

▪ Primary consideration when estimation an 
algorithm’s performance is the number of 
basic operations required by the algorithm 
to process an input of a certain size.

❑ Basic operations 
 The time for performing a basic operation does not 

depend on particular inputs

 E.g., operations for +, -, X, /

❑ Size
 The number of inputs processed
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Random Access Machine (RAM)

▪ To analyze the efficiency, we need an 

abstract machine model

▪ RAM

❑ Each simple operation takes 1 time step

❑ Loops and subroutines are not simple operations

❑ Each memory access takes one time step, no 

shortage of memory
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What does “size” exactly mean?

▪ Number of inputs            strong

❑ Strongly polynomial time

▪ Input length (binary encoded)          weak

❑ (Weakly) polynomial time

❑ Most commonly adopted definition

▪ Input magnitudes           even weaker

❑ Pseudo-polynomial time
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Growth rate

▪ Growth rate: A program with O(f(n)) is said to 

have growth rate of f(n). It shows how fast 

the running time grows when n increases.
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Growth rates illustrated

n=1 n=2 n=4 n=8 n=16 n=32

O(1) 1 1 1 1 1 1

O(logn) 0 1 2 3 4 5

O(n) 1 2 4 8 16 32

O(nlogn) 0 2 8 24 64 160

O(n2) 1 4 16 64 256 1024

O(n3), 1 8 64 512 4096 32768

O(2n) 2 4 16 235 65536 4294967296
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Exponential growth

▪ Say that you have a problem that, for an input 
consisting of n items, can be solved by going 
through 2n cases

▪ You use Deep Blue, that analyses 200 million 
cases per second
❑ Input with 15 items, 163 microseconds

❑ Input with 30 items, 5.36 seconds

❑ Input with 50 items, more than two months

❑ Input with 80 items, 191 million years
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Examples of Growth Rate

▪ Example 1, find the largest value in an array

// Find largest value

int largest(int array[], int n) {

int currlarge = 0; // Largest value seen

for (int i=0; i<n; i++) // For each val

if (array[currlarge] < array[i])

currlarge = i;      // Remember pos

return currlarge;       // Return largest

}

c: the time for performing a comparison
operation <, which varies for different 
computers

n: the number of < operations processed
T(n) = c n
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Examples (cont.)

▪ Example 2: Assignment statement.
T(n) = c1

▪ Example 3:

sum = 0;

for (i=1; i<=n; i++)

for (j=1; j<n; j++)

sum++;

}

T(n) = c2 n2
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The growth rate of a recursive algorithm

▪ Example 1: int Fact(int n){

if (n ==0 ) return 1;

return n * Fact(n-1);

}

▪ Denote by T(n) the time for computing 

Fact(n)

❑ T(n) = T(n-1)+ c

= T(n-2) + c + c = T(n-2) + 2c

…

=T(n-n) + nc= c(n+1)
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Binary Search

▪ How many elements are examined in the 
worst case?
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Binary Search

// Return position of element in sorted
// array of size n with value K. 
int binary(int array[], int l, int r, int K) {

if( l==r ){
if( array[r] == K ) return r;
else                return -1; //not found

}

int m = (l+r)/2; // Check middle
if (K <= array[m]) // Left half

return binary( array, l, m, K); 
else               // Right half

return binary( array, m+1, r, K);
}
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The growth rate of a recursive 
algorithm (cont.)

▪ Binary search algorithm

▪ T(n) = c + T(n/2)

= c + c + T(n/4)

=2c + T(n/22)

=3c + T(n/23)

…

= c log n + T(n/2log n)

= c log n + T(n/n)

= c (log n + 1)
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The growth rate of a recursive algorithm (cont.)

▪ Hanoi Puzzle

pole 1       pole 2    pole 3       pole 1       pole 2    pole 3

(a)                                    (b)
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The growth rate of a recursive 
algorithm (cont.)

//moves n rings from pole s to pole f with the help of pole t

▪ void Hanoi(int n, int s, int f, int t){

if( n == 1) printf(“move ring 1 from poles %d to %d\n”, s, f);  

else{

// move the upmost n-1 rings in pole s to pole t with the 

help of pole f

Hanoi(n-1, s, t, f);

printf(“move ring %d from  %d pole to %d pole\n”, n, s, f);

// moves the n-1 rings in pole t to pole f with the help of 

pole s

Hanoi(n-1, t, f, s);

}
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The growth rate of a recursive 
algorithm (cont.)

▪ Denote by T(n) the running time of Hanoi

▪ T(n)=T(n-1) + c + T(n-1) 

= 2T(n-1) + c

=2(2T(n-2)+c) + c

=22T(n-2)+2c+c

=23T(n-3)+ 22c + 2c+c

…

=2nT(n-n)+ 2n-1c +…+ 22c + 2c+c

=2n-1c +…+ 22c + 2c+c, as T(0)=0

=(2n-1)c
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The growth rate of a recursive 
algorithm (cont.)

▪ The steps for analyzing the growth rate of a 

recursive algorithm

❑ Derive the recurrence relation of T(n)

 E.g., T(n)=T(n-1)+c for the factorial function and 

T(n)=c+T(n/2) for the binary search algorithm

❑ Solve the recurrence relation T(n)

 see the relation with T(n-1) and T(n-2), or T(n/2) and 

T(n/4), etc, e.g., T(n-1)=T(n-2)+c

 Expand T(n) with substitute

 Expand T(n) until the base case of T(0) or T(1)

 Sum up some terms
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The Master Method

▪ A "cookbook" method for estimating the 

growth rate of a recursive algorithm

❑ The CLRS book (3rd edition), Sections 4.5
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Glossary

▪ growth rate 

❑ The rate at which the cost of an algorithm grows 

as the size of inputs grows

▪ linear growth rate / linear time cost

❑ T(n) = cn

▪ quadratic growth rate

❑ T(n)=cn2

▪ exponential growth rate

❑ T(n)=2n
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Growth Rates Comparison
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Faster Computer or Algorithm?

What happens when we buy a computer 10 
times faster?

T(n) n n’ Change n’/n

10n 1,000 10,000 n’ = 10n 10

20n 500 5,000 n’ = 10n 10

5n log n 250 1,842 10 n < n’ < 10n 7.37

2n2 70 223 n’ = 10n 3.16

2n 13 16 n’ = n + 3 -----

27



@ CS311, Hao Wang, SCU

Best, Worst, Average Cases

▪ Not all inputs of a given size take the same 
time to run.

▪ Sequential search for K in an array of n
integers:

• Begin at first element in array and look at each 

element in turn until K is found

▪ Best case: Find at first position.  Cost is 1 compare

▪ Worst case: Find at last position.  Cost is n compares

▪ Average case: (n+1)/2 compares 
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Which Analysis to Use?

▪ Best case analysis is too optimistic

▪ While average time appears to be the fairest 
measure, it may be difficult to determine.

❑ require knowledge of the distribution of inputs

▪ When is the worst case time important?
❑ Give an upper bound on the running time
 Important for real-time algorithms

❑ Worst case running time usually is in the order of 
average case running time, with only a few times 
longer
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Asymptotic Analysis: Big-Oh

▪ Definition: For T(n) a non-negatively valued 
function, T(n) is in the set O(f(n)) if there 
exist two positive constants c and n0 such 
that T(n) <= cf(n) for all n > n0.

▪ Usage: The algorithm is in O(n2) in [best, 
average, worst] case.

▪ Meaning: For all data sets big enough (i.e., 
n>n0), the algorithm always executes in less 
than cf(n) steps in [best, average, worst] case.
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Big-Oh Notation (cont)

▪ Big-Oh notation indicates an upper bound on a 
growth rate

▪ Example 1: If T(n) = 3n2 then T(n) is in O(n2).

▪ Example 2: If T(n) = 3n2 then T(n) is in O(n3).

▪ Use the tightest upper bound:

❑ While T(n) = 3n2 is in O(n3), we prefer O(n2).
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Big-Oh Examples

▪ Definition does not require upper bound to be 
tight, though we would prefer as tight as possible

▪ Example 1: What is Big-Oh of T(n) = 3n+3

❑ Let f(n) = n, c = 6 and n0 = 1;

T(n) = O(f(n)) = O(n) because 3n+3 ≤ 6f(n) if n ≥ 1 

❑ Let f(n) = n, c = 4 and n0 = 3;

T(n) = O(f(n)) = O(n) because 3n+3 ≤ 4f(n) if n ≥ 3 

❑ Let f(n) = n2, c = 1 and n0 = 5;

T(n) = O(f(n)) = O(n2) because 3n+3 ≤ (f(n))2 if n ≥ 5 

▪ We certainly prefer O(n). 
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Big-Oh Examples

▪ Example 2: Finding value X in an array 
(average cost).

▪ How to identify constants c and n0 ?

▪ T(n) = csn/2.

❑ For all values of n > 1, csn/2 <= csn.

Therefore, by the definition, T(n) is in O(n) for n0 = 
1 and c = cs.
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Big-Oh Examples

▪ Example 3: T(n) = c1n
2 + c2n in average case.

c1n
2 + c2n <= c1n

2 + c2n
2 <= (c1 + c2)n

2 for all n
> 1.

T(n) <= cn2 for c = c1 + c2 and n0 = 1.

Therefore, T(n) is in O(n2) by the definition.

▪ Example 4: T(n) = c.  We say this is in O(1).
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Rules for Big-Oh

▪ If T(n) = O(c f(n)) for a constant c, then 

T(n) =O(f(n))

▪ If T1(n) = O(f(n)) and T2(n)=O(g(n)) then 

T1(n) + T2(n) = O(max(f(n), g(n)))

▪ If T1(n) = O(f(n)) and T2(n)=O(g(n)) then 

T1(n) * T2(n) = O(f(n) * g(n)))

▪ If T(n) = amnk + am-1n
k-1+ …+ a1n +a0 then

T(n) =O(nk)

▪ Thus
❑ Lower-order terms can be ignored.

❑ Constants can be thrown away.
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More about Big-Oh notation

▪ Asymptotic: Big-Oh is meaningful only when 

n is sufficiently large

n ≥ n0 means that we only care about large 

size problems.

▪ Growth rate: A program with O(f(n)) is said to 

have growth rate of f(n). It shows how fast 

the running time grows when n increases.
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Typical bounds (Big-Oh functions)

▪ Typical bounds in an increasing order of growth 
rate

▪ Function Name

   O(1), Constant

   O(log n), Logarithmic

   O(n), Linear

   O(nlog n), Log linear

   O(n2), Quadratic

   O(n3), Cubic

   O(2n), Exponential
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How do we use Big-Oh?

▪ Programs can be evaluated by comparing their 
Big-Oh functions with the constants of 
proportionality neglected. For example,

❑ T1(n) = 10000 n and T2(n) = 9 n. The time complexity 
of T1(n) is equal to the time complexity of T2(n).

▪ The common Big-Oh functions provide a 
“yardstick” for classifying different algorithms.

▪ Algorithms of the same Big-Oh can be 
considered as equally good.

▪ A program with O(log n) is better than one with 
O(n).
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Nested loops

▪ Running time of a loop equals running time of 

the code within the loop times the number of 

iterations.

▪ Nested Loops: analyze inside out

1  for (i=0; i <n; i++)

2 for (j = 0; j< n; j++)

3          k++

▪ Running time of lines 2-3: O(n)

▪ Running time of lines 1-3: O(n2)
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Consecutive statements

▪ For a sequence S1, S2, .., Sk of statements, 

running time is maximum of running times of 

individual statements

for (i=0; i<n; i++)

    x[i] = 0;

for (i=0; i<n; i++)

    for (j=0; j<n; j++)

          k[i] += i+j;

▪ Running time is: O(n2)
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Conditional statements

▪ The running time of 

If (cond) S1

else S2

is running time of cond plus the max of running 
times of S1 and S2. 
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More nested loops

1 int k = 0;

2 for (i=0; i<n; i++)

3     for (j=i; j<n; j++)

4 k++

▪ Running time of lines 3-4: n-i

▪ Running time of lines 1-4:

)(2/)1()( 2
1

0

nOnnin
n

i

=+=−
−

=

42



@ CS311, Hao Wang, SCU

More nested loops

1 int k = 0;

2 for (i=1; i<n; i*= 2)

3    for (j=1; j<n; j++)

4 k++

▪ Running time of inner loop: O(n)

▪ What about the outer loop?

▪ In m-th iteration, value of i is 2m-1

▪ Suppose 2q-1 < n ≤ 2q, then outer loop is 
executed q times. 

▪ Running time is O(n log n). Why?
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A more intricate example

1 int k = 0;

2 for (i=1; i<n; i*= 2)

3     for (j=1; j<i; j++)

4 k++

▪ Running time of inner loop: O(i)

▪ Suppose 2q-1 < n ≤ 2q, then the total running 
time:

1 + 2 + 4 + ….+2q-1 = 2q -1

▪ Running time is O(n). 
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A Common Misunderstanding

▪ “The best case for my algorithm is n=1 because 
that is the fastest.”  WRONG!

➢ Big-oh refers to a growth rate as n grows to .

➢ Best case is defined as which input of size n is 
cheapest among all inputs of size n.

➢ Analyze the growth rate for best/average/worst cases, 
e.g., T(n)=2n2+3n+6, then obtain the upper bound for 
the growth rate, e.g., T(n)=O(2n2)
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Lower Bounds

▪ To give better performance estimates, we 

may also want to give lower bounds on 

growth rates

▪ Definition (omega): T(n) = Ω(f(n))  

if there exist some constants c and n0 such 

that T(n) ≥ cf(n) for all n ≥ n0
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“Exact” bounds

▪ Definition (Theta): T(n) = Θ(f(n)) if and only if 
T(n) =O(f(n)) and T(n) = Ω(f(n)).

▪ An algorithm is Θ(f(n)) means that f(n) is a tight 
bound (as good as possible) on its running time.
❑ On all inputs of size n, time is ≤ f(n)

❑ On all inputs of size n, time is ≥ f(n)

int k = 0;

for (i=1; i<n; i*=2)

    for (j=1;j<n; j++)

        k++

This program is O(n2) but not Ω(n2); it is Θ(n log n)
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Big-Omega

▪ Definition: For T(n) a non-negatively valued 
function, T(n) is in the set (g(n)) if there 
exist two positive constants c and n0 such 
that T(n) >= c*g(n) for all n > n0.

▪ Lower bound on a growth rate

▪ Meaning: For all data sets big enough (i.e.,  n
> n0), the algorithm always executes in more 
than c*g(n) steps.
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Big-Omega Example

▪ T(n) = c1n
2 + c2n.

     c1n
2 + c2n >= c1n

2 for all n > 1.

     T(n) >= cn2 for c = c1 and n0 = 1.

Therefore, T(n) is in (n2) by the definition.

▪ T(n) in  (n) as T(n) >= c2n for n >= 1

▪ We want the greatest lower bound.
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Theta Notation

▪ When big-Oh and  meet, we indicate this by 

using  (big-Theta) notation.

▪ Definition: An algorithm is said to be (h(n)) if 

it is in O(h(n)) and it is in (h(n)).

▪ T(n) = c1n
2 + c2n.

➢ T(n) = (n2 ) as T(n) in O(n2 ) and T(n) in (n2 ) 

▪ For T(n) given by an algebraic equation, we 

always give a  analysis
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Theta Notation (cont.)

▪ We may not have (n) for some T(n)

▪ Example 

T(n) =   n        for  all odd n>= 1

n2 for all even n>=1

▪ Upper bound 

❑ T(n) in O(n2)

▪ Lower bound 

❑ T(n) in  (n)

▪ big-Oh and  do not meet
51
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An Alternative Definiton for 

▪ T(n) is in  (g(n)) if there exists a positive 

constant c such that T(n)>=cg(n) for an 

infinite number of values for n.

▪ Using this definition, T(n) is in (n2) for the 

example in the previous slide.

▪ Caveat: Not a lower bound for the function, 

but for a "subsequence"
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A Common Misunderstanding

▪ Confusing worst case with upper bound, and 

best case with lower bound

▪ Worst case refers to the worst input from 

among the choices for possible inputs of a 

given size.

▪ Upper bound refers to a growth rate, and the 

rate may be for the worst case, average case, 

or the best case
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Simplifying Rules
1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is 

in O(h(n)).

a. If T(n) in O(n), then T(n) in O(n2) 

2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) 

is in O(g(n)).
a. Ignore constants

3. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), then (f1
+ f2)(n) is in O(max(g1(n), g2(n))).

a. Drop low order terms,  e.g.T(n) = n2 + n is in O(n2)

4. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)) then 

f1(n)f2(n) is in O(g1(n)g2(n)).
a) Useful for analyzing loops
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Running Time Examples (1)

▪ Example 1: a = b;

This assignment takes constant time, so it is 

(1).

▪ Example 2:
sum = 0;
for (i=1; i<=n; i++)

sum += n;

T(n) = (n)
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Running Time Examples (2)

▪ Example 3:
// take time (1)
sum = 0;                

// take time i = (n2)
for (i=1; i<=n; i++) 

for (j=1; j<=i; j++)
sum++;

// take time (n)
for (k=0; k<n; k++)

A[k] = k;

▪ T(n)= (1)+(n2)+(n) = (n2)
❑ Drop low order terms
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Running Time Examples (3)

▪ Example 4:
sum1 = 0;
// takes time n2 =(n2)
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
// takes time i = n(n+1)/2 =(n2)
for (i=1; i<=n; i++)

for (j=1; j<=i; j++)
sum2++;
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Running Time Examples (4)
▪ Example 5:
sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

❑ Each inner loop takes time (n) 
❑ How many inner loops? 

 log n

❑ (n log n).

▪ Example 6:
sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

❑ Each inner loop takes k basic operations 
❑ Total time: 

1+2+4+8+…+n/2+n
=2k for k = 0 to log n
=2n-1=(n) 58
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Other Control Statements

▪ while loop: Analyze like a for loop.

▪ if statement: Take greater complexity of 
then/else clauses.

▪ switch statement: Take complexity of most 
expensive case.

▪ Subroutine call: Complexity of the subroutine.
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Analyzing Problems

▪ Upper bound: Upper bound of the best 
known algorithm.
❑ e.g., O(n log n) for known sorting algorithms

▪ Lower bound: Lower bound for every 
possible algorithm.

▪ It is useful to see whether an algorithm is 
good enough
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Analyzing Problems: Example

▪ Common misunderstanding: No distinction 
between upper/lower bound when you know the 
exact running time.

▪ Example of imperfect knowledge: Sorting

1. Cost of I/O: (n).

2. Bubble or insertion sort: O(n2).

3. A better sort (Quicksort, Mergesort, Heapsort, 
etc.): O(n log n).

4. We prove later that sorting is (n log n).
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Multiple Parameters

▪ Compute the rank ordering for all C pixel 
values in a picture of P pixels.

for (i=0; i<C; i++)  // Initialize count

count[i] = 0;

for (i=0; i<P; i++)  // Look at all pixels

count[value(i)]++; // Increment count

sort(count);         // Sort pixel counts

If we use P as the measure, then time is  (P).

▪ More accurate is (P + C log C).
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Space Bounds

▪ Space bounds can also be analyzed with 
asymptotic complexity analysis.

▪ Time: Algorithm

▪ Space: Data Structure
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Space/Time Tradeoff Principle

▪ One can often reduce time if one is willing to 
sacrifice space, or vice versa.

• Encoding or packing information

Boolean flags
• Table lookup

Fibonacci calculation

▪ Disk-based Space/Time Tradeoff Principle: 
The smaller you make the disk storage 
requirements, the faster your program will run.
➢ Disk is about 1,000 times slower than memory
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Summary: lower vs. upper bounds

▪ This section gives some ideas on how to 
analyze the complexity of programs. 

▪ We have focused on worst case analysis.

▪ Upper bound O(f(n)) means that for sufficiently 
large inputs, running time T(n) is bounded by a 
multiple of f(n).

▪ Lower bound Ω(f(n)) means that for sufficiently 
large n, there is at least one input of size n such 
that running time is at least a fraction of f(n)

▪ We also touch the “exact” bound Θ(f(n)). 
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Summary: algorithms vs. Problems

▪ Running time analysis establishes bounds for 
individual algorithms. 

▪ Upper bound O(f(n)) for a problem: there is 
some O(f(n)) algorithms to solve the problem. 

▪ Lower bound Ω(f(n)) for a problem: every 
algorithm to solve the problem is Ω(f(n)). 

▪ They different from the lower and upper 
bound of an algorithm. 
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Conclusion

▪ Growth rate of an algorithm

▪ The worst, average, and best cases

▪ The upper and low bounds on a growth rate

❑ Big O, big , big 

❑ Consider only the most important term

❑ Ignore low order terms

▪ The cost of an algorithm vs. the cost of a 

problem
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Homework 1

▪ See course webpage

▪ Deadline: midnight before next lecture

▪ Submit to: cs_scu@foxmail.com

▪ File name format:

❑ CS311_Hw1_yourID_yourLastName.doc (or .pdf)
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