
@ CS311, Hao Wang, SCU

Data Structures and

Algorithms

Lecture 3: Algorithm Analysis

@ CS311, Hao Wang, SCU

Motivation

▪ Purpose: Understanding the resouce

requirements of an algorithm

❑ Time

❑ Memory

▪ Runing time analysis estimates the time

required of an algorithm as a function of the

input size. (upper and lower bounds)

▪ Usages:

❑ Estimate growth rate as input grows.

❑ Guide to choose between alternative algorithms.

1

@ CS311, Hao Wang, SCU

An example

▪ int sum(int set[], int n) {

int temsum, i;

tempsum = 1; /* step/execution 1 */

for (i=0; i<n; i++) /* step/execution n+1 */

tempsum +=set[i]; /* step/execution n */

return tempsum; /* step/execution 1 */

}

▪ Input size: n (number of array elements)

▪ Total number of steps: 2*n + 3

2

@ CS311, Hao Wang, SCU

Algorithm Efficiency

▪ There are often many approaches
(algorithms) to solve a problem. How do we
choose between them?

▪ As the cores of computer program design,
there are two (sometimes conflicting) goals.

1. To design an algorithm that is easy to
understand, code, debug.

2. To design an algorithm that makes efficient use
of the computer’s resources.

3

@ CS311, Hao Wang, SCU

Algorithm Efficiency (cont.)

▪ Goal (1) is the concern of Software
Engineering.

▪ Goal (2) is the concern of data structures and
algorithm analysis.

▪ When goal (2) is important, how do we
measure an algorithm’s cost?

4

@ CS311, Hao Wang, SCU

Analysis and measurements

▪ Performance measurement (execution time):

machine dependent.

▪ Performance analysis: machine

independent.

▪ How do we analyze a program independent

of a machine?

❑ Counting the number steps.

5

@ CS311, Hao Wang, SCU

How to Measure Efficiency?

▪ Empirical comparison (run programs)

▪ It is difficult to be `fair’ due to:

❑ Time consuming, especially when there are many
alternative algorithms for a problem

❑ Depend on your programming skills

 One program may be finely tuned, while the other is not

❑ Depend on the computers running algorithms

 e.g., CPU, workload, etc.

❑ May vary for different test cases

 One program may favor some test cases

6

@ CS311, Hao Wang, SCU

How to Measure Efficiency? (cont.)

▪ Analytical method: asymptotic algorithm analysis

▪ Critical resources, factors affecting running time
❑ Running time, space (memory or disk)

For most algorithms, running time depends on “size”
of the input.

Running time is expressed as T(n) for some function
T on input size n.

7

@ CS311, Hao Wang, SCU

How to Measure Efficiency? (cont.)

▪ Primary consideration when estimation an
algorithm’s performance is the number of
basic operations required by the algorithm
to process an input of a certain size.

❑ Basic operations
 The time for performing a basic operation does not

depend on particular inputs

 E.g., operations for +, -, X, /

❑ Size
 The number of inputs processed

8

@ CS311, Hao Wang, SCU

Random Access Machine (RAM)

▪ To analyze the efficiency, we need an

abstract machine model

▪ RAM

❑ Each simple operation takes 1 time step

❑ Loops and subroutines are not simple operations

❑ Each memory access takes one time step, no

shortage of memory

9

@ CS311, Hao Wang, SCU

What does “size” exactly mean?

▪ Number of inputs strong

❑ Strongly polynomial time

▪ Input length (binary encoded) weak

❑ (Weakly) polynomial time

❑ Most commonly adopted definition

▪ Input magnitudes even weaker

❑ Pseudo-polynomial time

10

@ CS311, Hao Wang, SCU

Growth rate

▪ Growth rate: A program with O(f(n)) is said to

have growth rate of f(n). It shows how fast

the running time grows when n increases.

11

@ CS311, Hao Wang, SCU

Growth rates illustrated

n=1 n=2 n=4 n=8 n=16 n=32

O(1) 1 1 1 1 1 1

O(logn) 0 1 2 3 4 5

O(n) 1 2 4 8 16 32

O(nlogn) 0 2 8 24 64 160

O(n2) 1 4 16 64 256 1024

O(n3), 1 8 64 512 4096 32768

O(2n) 2 4 16 235 65536 4294967296

12

@ CS311, Hao Wang, SCU

Exponential growth

▪ Say that you have a problem that, for an input
consisting of n items, can be solved by going
through 2n cases

▪ You use Deep Blue, that analyses 200 million
cases per second
❑ Input with 15 items, 163 microseconds

❑ Input with 30 items, 5.36 seconds

❑ Input with 50 items, more than two months

❑ Input with 80 items, 191 million years

13

@ CS311, Hao Wang, SCU

Examples of Growth Rate

▪ Example 1, find the largest value in an array

// Find largest value

int largest(int array[], int n) {

int currlarge = 0; // Largest value seen

for (int i=0; i<n; i++) // For each val

if (array[currlarge] < array[i])

currlarge = i; // Remember pos

return currlarge; // Return largest

}

c: the time for performing a comparison
operation <, which varies for different
computers

n: the number of < operations processed
T(n) = c n

14

@ CS311, Hao Wang, SCU

Examples (cont.)

▪ Example 2: Assignment statement.
T(n) = c1

▪ Example 3:

sum = 0;

for (i=1; i<=n; i++)

for (j=1; j<n; j++)

sum++;

}

T(n) = c2 n2

15

@ CS311, Hao Wang, SCU

The growth rate of a recursive algorithm

▪ Example 1: int Fact(int n){

if (n ==0) return 1;

return n * Fact(n-1);

}

▪ Denote by T(n) the time for computing

Fact(n)

❑ T(n) = T(n-1)+ c

= T(n-2) + c + c = T(n-2) + 2c

…

=T(n-n) + nc= c(n+1)

16

@ CS311, Hao Wang, SCU

Binary Search

▪ How many elements are examined in the
worst case?

17

@ CS311, Hao Wang, SCU

Binary Search

// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int l, int r, int K) {

if(l==r){
if(array[r] == K) return r;
else return -1; //not found

}

int m = (l+r)/2; // Check middle
if (K <= array[m]) // Left half

return binary(array, l, m, K);
else // Right half

return binary(array, m+1, r, K);
}

18

@ CS311, Hao Wang, SCU

The growth rate of a recursive
algorithm (cont.)

▪ Binary search algorithm

▪ T(n) = c + T(n/2)

= c + c + T(n/4)

=2c + T(n/22)

=3c + T(n/23)

…

= c log n + T(n/2log n)

= c log n + T(n/n)

= c (log n + 1)
19

@ CS311, Hao Wang, SCU

The growth rate of a recursive algorithm (cont.)

▪ Hanoi Puzzle

pole 1 pole 2 pole 3 pole 1 pole 2 pole 3

(a) (b)

20

@ CS311, Hao Wang, SCU

The growth rate of a recursive
algorithm (cont.)

//moves n rings from pole s to pole f with the help of pole t

▪ void Hanoi(int n, int s, int f, int t){

if(n == 1) printf(“move ring 1 from poles %d to %d\n”, s, f);

else{

// move the upmost n-1 rings in pole s to pole t with the

help of pole f

Hanoi(n-1, s, t, f);

printf(“move ring %d from %d pole to %d pole\n”, n, s, f);

// moves the n-1 rings in pole t to pole f with the help of

pole s

Hanoi(n-1, t, f, s);

}

} 21

@ CS311, Hao Wang, SCU

The growth rate of a recursive
algorithm (cont.)

▪ Denote by T(n) the running time of Hanoi

▪ T(n)=T(n-1) + c + T(n-1)

= 2T(n-1) + c

=2(2T(n-2)+c) + c

=22T(n-2)+2c+c

=23T(n-3)+ 22c + 2c+c

…

=2nT(n-n)+ 2n-1c +…+ 22c + 2c+c

=2n-1c +…+ 22c + 2c+c, as T(0)=0

=(2n-1)c

22

@ CS311, Hao Wang, SCU

The growth rate of a recursive
algorithm (cont.)

▪ The steps for analyzing the growth rate of a

recursive algorithm

❑ Derive the recurrence relation of T(n)

 E.g., T(n)=T(n-1)+c for the factorial function and

T(n)=c+T(n/2) for the binary search algorithm

❑ Solve the recurrence relation T(n)

 see the relation with T(n-1) and T(n-2), or T(n/2) and

T(n/4), etc, e.g., T(n-1)=T(n-2)+c

 Expand T(n) with substitute

 Expand T(n) until the base case of T(0) or T(1)

 Sum up some terms

23

@ CS311, Hao Wang, SCU

The Master Method

▪ A "cookbook" method for estimating the

growth rate of a recursive algorithm

❑ The CLRS book (3rd edition), Sections 4.5

24

@ CS311, Hao Wang, SCU

Glossary

▪ growth rate

❑ The rate at which the cost of an algorithm grows

as the size of inputs grows

▪ linear growth rate / linear time cost

❑ T(n) = cn

▪ quadratic growth rate

❑ T(n)=cn2

▪ exponential growth rate

❑ T(n)=2n

25

@ CS311, Hao Wang, SCU

Growth Rates Comparison

26

@ CS311, Hao Wang, SCU

Faster Computer or Algorithm?

What happens when we buy a computer 10
times faster?

T(n) n n’ Change n’/n

10n 1,000 10,000 n’ = 10n 10

20n 500 5,000 n’ = 10n 10

5n log n 250 1,842 10 n < n’ < 10n 7.37

2n2 70 223 n’ = 10n 3.16

2n 13 16 n’ = n + 3 -----

27

@ CS311, Hao Wang, SCU

Best, Worst, Average Cases

▪ Not all inputs of a given size take the same
time to run.

▪ Sequential search for K in an array of n
integers:

• Begin at first element in array and look at each

element in turn until K is found

▪ Best case: Find at first position. Cost is 1 compare

▪ Worst case: Find at last position. Cost is n compares

▪ Average case: (n+1)/2 compares

28

@ CS311, Hao Wang, SCU

Which Analysis to Use?

▪ Best case analysis is too optimistic

▪ While average time appears to be the fairest
measure, it may be difficult to determine.

❑ require knowledge of the distribution of inputs

▪ When is the worst case time important?
❑ Give an upper bound on the running time
 Important for real-time algorithms

❑ Worst case running time usually is in the order of
average case running time, with only a few times
longer

29

@ CS311, Hao Wang, SCU

Asymptotic Analysis: Big-Oh

▪ Definition: For T(n) a non-negatively valued
function, T(n) is in the set O(f(n)) if there
exist two positive constants c and n0 such
that T(n) <= cf(n) for all n > n0.

▪ Usage: The algorithm is in O(n2) in [best,
average, worst] case.

▪ Meaning: For all data sets big enough (i.e.,
n>n0), the algorithm always executes in less
than cf(n) steps in [best, average, worst] case.

30

@ CS311, Hao Wang, SCU

Big-Oh Notation (cont)

▪ Big-Oh notation indicates an upper bound on a
growth rate

▪ Example 1: If T(n) = 3n2 then T(n) is in O(n2).

▪ Example 2: If T(n) = 3n2 then T(n) is in O(n3).

▪ Use the tightest upper bound:

❑ While T(n) = 3n2 is in O(n3), we prefer O(n2).

31

@ CS311, Hao Wang, SCU

Big-Oh Examples

▪ Definition does not require upper bound to be
tight, though we would prefer as tight as possible

▪ Example 1: What is Big-Oh of T(n) = 3n+3

❑ Let f(n) = n, c = 6 and n0 = 1;

T(n) = O(f(n)) = O(n) because 3n+3 ≤ 6f(n) if n ≥ 1

❑ Let f(n) = n, c = 4 and n0 = 3;

T(n) = O(f(n)) = O(n) because 3n+3 ≤ 4f(n) if n ≥ 3

❑ Let f(n) = n2, c = 1 and n0 = 5;

T(n) = O(f(n)) = O(n2) because 3n+3 ≤ (f(n))2 if n ≥ 5

▪ We certainly prefer O(n).

32

@ CS311, Hao Wang, SCU

Big-Oh Examples

▪ Example 2: Finding value X in an array
(average cost).

▪ How to identify constants c and n0 ?

▪ T(n) = csn/2.

❑ For all values of n > 1, csn/2 <= csn.

Therefore, by the definition, T(n) is in O(n) for n0 =
1 and c = cs.

33

@ CS311, Hao Wang, SCU

Big-Oh Examples

▪ Example 3: T(n) = c1n
2 + c2n in average case.

c1n
2 + c2n <= c1n

2 + c2n
2 <= (c1 + c2)n

2 for all n
> 1.

T(n) <= cn2 for c = c1 + c2 and n0 = 1.

Therefore, T(n) is in O(n2) by the definition.

▪ Example 4: T(n) = c. We say this is in O(1).

34

@ CS311, Hao Wang, SCU

Rules for Big-Oh

▪ If T(n) = O(c f(n)) for a constant c, then

T(n) =O(f(n))

▪ If T1(n) = O(f(n)) and T2(n)=O(g(n)) then

T1(n) + T2(n) = O(max(f(n), g(n)))

▪ If T1(n) = O(f(n)) and T2(n)=O(g(n)) then

T1(n) * T2(n) = O(f(n) * g(n)))

▪ If T(n) = amnk + am-1n
k-1+ …+ a1n +a0 then

T(n) =O(nk)

▪ Thus
❑ Lower-order terms can be ignored.

❑ Constants can be thrown away.

35

@ CS311, Hao Wang, SCU

More about Big-Oh notation

▪ Asymptotic: Big-Oh is meaningful only when

n is sufficiently large

n ≥ n0 means that we only care about large

size problems.

▪ Growth rate: A program with O(f(n)) is said to

have growth rate of f(n). It shows how fast

the running time grows when n increases.

36

@ CS311, Hao Wang, SCU

Typical bounds (Big-Oh functions)

▪ Typical bounds in an increasing order of growth
rate

▪ Function Name

 O(1), Constant

 O(log n), Logarithmic

 O(n), Linear

 O(nlog n), Log linear

 O(n2), Quadratic

 O(n3), Cubic

 O(2n), Exponential

37

@ CS311, Hao Wang, SCU

How do we use Big-Oh?

▪ Programs can be evaluated by comparing their
Big-Oh functions with the constants of
proportionality neglected. For example,

❑ T1(n) = 10000 n and T2(n) = 9 n. The time complexity
of T1(n) is equal to the time complexity of T2(n).

▪ The common Big-Oh functions provide a
“yardstick” for classifying different algorithms.

▪ Algorithms of the same Big-Oh can be
considered as equally good.

▪ A program with O(log n) is better than one with
O(n).

38

@ CS311, Hao Wang, SCU

Nested loops

▪ Running time of a loop equals running time of

the code within the loop times the number of

iterations.

▪ Nested Loops: analyze inside out

1 for (i=0; i <n; i++)

2 for (j = 0; j< n; j++)

3 k++

▪ Running time of lines 2-3: O(n)

▪ Running time of lines 1-3: O(n2)

39

@ CS311, Hao Wang, SCU

Consecutive statements

▪ For a sequence S1, S2, .., Sk of statements,

running time is maximum of running times of

individual statements

for (i=0; i<n; i++)

 x[i] = 0;

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 k[i] += i+j;

▪ Running time is: O(n2)

40

@ CS311, Hao Wang, SCU

Conditional statements

▪ The running time of

If (cond) S1

else S2

is running time of cond plus the max of running
times of S1 and S2.

41

@ CS311, Hao Wang, SCU

More nested loops

1 int k = 0;

2 for (i=0; i<n; i++)

3 for (j=i; j<n; j++)

4 k++

▪ Running time of lines 3-4: n-i

▪ Running time of lines 1-4:

)(2/)1()(2
1

0

nOnnin
n

i

=+=−
−

=

42

@ CS311, Hao Wang, SCU

More nested loops

1 int k = 0;

2 for (i=1; i<n; i*= 2)

3 for (j=1; j<n; j++)

4 k++

▪ Running time of inner loop: O(n)

▪ What about the outer loop?

▪ In m-th iteration, value of i is 2m-1

▪ Suppose 2q-1 < n ≤ 2q, then outer loop is
executed q times.

▪ Running time is O(n log n). Why?

43

@ CS311, Hao Wang, SCU

A more intricate example

1 int k = 0;

2 for (i=1; i<n; i*= 2)

3 for (j=1; j<i; j++)

4 k++

▪ Running time of inner loop: O(i)

▪ Suppose 2q-1 < n ≤ 2q, then the total running
time:

1 + 2 + 4 + ….+2q-1 = 2q -1

▪ Running time is O(n).

44

@ CS311, Hao Wang, SCU

A Common Misunderstanding

▪ “The best case for my algorithm is n=1 because
that is the fastest.” WRONG!

➢ Big-oh refers to a growth rate as n grows to .

➢ Best case is defined as which input of size n is
cheapest among all inputs of size n.

➢ Analyze the growth rate for best/average/worst cases,
e.g., T(n)=2n2+3n+6, then obtain the upper bound for
the growth rate, e.g., T(n)=O(2n2)

45

@ CS311, Hao Wang, SCU

Lower Bounds

▪ To give better performance estimates, we

may also want to give lower bounds on

growth rates

▪ Definition (omega): T(n) = Ω(f(n))

if there exist some constants c and n0 such

that T(n) ≥ cf(n) for all n ≥ n0

46

@ CS311, Hao Wang, SCU

“Exact” bounds

▪ Definition (Theta): T(n) = Θ(f(n)) if and only if
T(n) =O(f(n)) and T(n) = Ω(f(n)).

▪ An algorithm is Θ(f(n)) means that f(n) is a tight
bound (as good as possible) on its running time.
❑ On all inputs of size n, time is ≤ f(n)

❑ On all inputs of size n, time is ≥ f(n)

int k = 0;

for (i=1; i<n; i*=2)

 for (j=1;j<n; j++)

 k++

This program is O(n2) but not Ω(n2); it is Θ(n log n)

47

@ CS311, Hao Wang, SCU

Big-Omega

▪ Definition: For T(n) a non-negatively valued
function, T(n) is in the set (g(n)) if there
exist two positive constants c and n0 such
that T(n) >= c*g(n) for all n > n0.

▪ Lower bound on a growth rate

▪ Meaning: For all data sets big enough (i.e., n
> n0), the algorithm always executes in more
than c*g(n) steps.

48

@ CS311, Hao Wang, SCU

Big-Omega Example

▪ T(n) = c1n
2 + c2n.

 c1n
2 + c2n >= c1n

2 for all n > 1.

 T(n) >= cn2 for c = c1 and n0 = 1.

Therefore, T(n) is in (n2) by the definition.

▪ T(n) in  (n) as T(n) >= c2n for n >= 1

▪ We want the greatest lower bound.

49

@ CS311, Hao Wang, SCU

Theta Notation

▪ When big-Oh and  meet, we indicate this by

using  (big-Theta) notation.

▪ Definition: An algorithm is said to be (h(n)) if

it is in O(h(n)) and it is in (h(n)).

▪ T(n) = c1n
2 + c2n.

➢ T(n) = (n2) as T(n) in O(n2) and T(n) in (n2)

▪ For T(n) given by an algebraic equation, we

always give a  analysis

50

@ CS311, Hao Wang, SCU

Theta Notation (cont.)

▪ We may not have (n) for some T(n)

▪ Example

T(n) = n for all odd n>= 1

n2 for all even n>=1

▪ Upper bound

❑ T(n) in O(n2)

▪ Lower bound

❑ T(n) in  (n)

▪ big-Oh and  do not meet
51

@ CS311, Hao Wang, SCU

An Alternative Definiton for 

▪ T(n) is in  (g(n)) if there exists a positive

constant c such that T(n)>=cg(n) for an

infinite number of values for n.

▪ Using this definition, T(n) is in (n2) for the

example in the previous slide.

▪ Caveat: Not a lower bound for the function,

but for a "subsequence"

52

@ CS311, Hao Wang, SCU

A Common Misunderstanding

▪ Confusing worst case with upper bound, and

best case with lower bound

▪ Worst case refers to the worst input from

among the choices for possible inputs of a

given size.

▪ Upper bound refers to a growth rate, and the

rate may be for the worst case, average case,

or the best case

53

@ CS311, Hao Wang, SCU

Simplifying Rules
1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is

in O(h(n)).

a. If T(n) in O(n), then T(n) in O(n2)

2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n)

is in O(g(n)).
a. Ignore constants

3. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), then (f1
+ f2)(n) is in O(max(g1(n), g2(n))).

a. Drop low order terms, e.g.T(n) = n2 + n is in O(n2)

4. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)) then

f1(n)f2(n) is in O(g1(n)g2(n)).
a) Useful for analyzing loops

54

@ CS311, Hao Wang, SCU

Running Time Examples (1)

▪ Example 1: a = b;

This assignment takes constant time, so it is

(1).

▪ Example 2:
sum = 0;
for (i=1; i<=n; i++)

sum += n;

T(n) = (n)

55

@ CS311, Hao Wang, SCU

Running Time Examples (2)

▪ Example 3:
// take time (1)
sum = 0;

// take time i = (n2)
for (i=1; i<=n; i++)

for (j=1; j<=i; j++)
sum++;

// take time (n)
for (k=0; k<n; k++)

A[k] = k;

▪ T(n)= (1)+(n2)+(n) = (n2)
❑ Drop low order terms

56

@ CS311, Hao Wang, SCU

Running Time Examples (3)

▪ Example 4:
sum1 = 0;
// takes time n2 =(n2)
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
// takes time i = n(n+1)/2 =(n2)
for (i=1; i<=n; i++)

for (j=1; j<=i; j++)
sum2++;

57

@ CS311, Hao Wang, SCU

Running Time Examples (4)
▪ Example 5:
sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

❑ Each inner loop takes time (n)
❑ How many inner loops?

 log n

❑ (n log n).

▪ Example 6:
sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

❑ Each inner loop takes k basic operations
❑ Total time:

1+2+4+8+…+n/2+n
=2k for k = 0 to log n
=2n-1=(n) 58

@ CS311, Hao Wang, SCU

Other Control Statements

▪ while loop: Analyze like a for loop.

▪ if statement: Take greater complexity of
then/else clauses.

▪ switch statement: Take complexity of most
expensive case.

▪ Subroutine call: Complexity of the subroutine.

59

@ CS311, Hao Wang, SCU

Analyzing Problems

▪ Upper bound: Upper bound of the best
known algorithm.
❑ e.g., O(n log n) for known sorting algorithms

▪ Lower bound: Lower bound for every
possible algorithm.

▪ It is useful to see whether an algorithm is
good enough

60

@ CS311, Hao Wang, SCU

Analyzing Problems: Example

▪ Common misunderstanding: No distinction
between upper/lower bound when you know the
exact running time.

▪ Example of imperfect knowledge: Sorting

1. Cost of I/O: (n).

2. Bubble or insertion sort: O(n2).

3. A better sort (Quicksort, Mergesort, Heapsort,
etc.): O(n log n).

4. We prove later that sorting is (n log n).

61

@ CS311, Hao Wang, SCU

Multiple Parameters

▪ Compute the rank ordering for all C pixel
values in a picture of P pixels.

for (i=0; i<C; i++) // Initialize count

count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels

count[value(i)]++; // Increment count

sort(count); // Sort pixel counts

If we use P as the measure, then time is (P).

▪ More accurate is (P + C log C).

62

@ CS311, Hao Wang, SCU

Space Bounds

▪ Space bounds can also be analyzed with
asymptotic complexity analysis.

▪ Time: Algorithm

▪ Space: Data Structure

63

@ CS311, Hao Wang, SCU

Space/Time Tradeoff Principle

▪ One can often reduce time if one is willing to
sacrifice space, or vice versa.

• Encoding or packing information

Boolean flags
• Table lookup

Fibonacci calculation

▪ Disk-based Space/Time Tradeoff Principle:
The smaller you make the disk storage
requirements, the faster your program will run.
➢ Disk is about 1,000 times slower than memory

64

@ CS311, Hao Wang, SCU

Summary: lower vs. upper bounds

▪ This section gives some ideas on how to
analyze the complexity of programs.

▪ We have focused on worst case analysis.

▪ Upper bound O(f(n)) means that for sufficiently
large inputs, running time T(n) is bounded by a
multiple of f(n).

▪ Lower bound Ω(f(n)) means that for sufficiently
large n, there is at least one input of size n such
that running time is at least a fraction of f(n)

▪ We also touch the “exact” bound Θ(f(n)).

65

@ CS311, Hao Wang, SCU

Summary: algorithms vs. Problems

▪ Running time analysis establishes bounds for
individual algorithms.

▪ Upper bound O(f(n)) for a problem: there is
some O(f(n)) algorithms to solve the problem.

▪ Lower bound Ω(f(n)) for a problem: every
algorithm to solve the problem is Ω(f(n)).

▪ They different from the lower and upper
bound of an algorithm.

66

@ CS311, Hao Wang, SCU

Conclusion

▪ Growth rate of an algorithm

▪ The worst, average, and best cases

▪ The upper and low bounds on a growth rate

❑ Big O, big , big 

❑ Consider only the most important term

❑ Ignore low order terms

▪ The cost of an algorithm vs. the cost of a

problem

67

@ CS311, Hao Wang, SCU

Homework 1

▪ See course webpage

▪ Deadline: midnight before next lecture

▪ Submit to: cs_scu@foxmail.com

▪ File name format:

❑ CS311_Hw1_yourID_yourLastName.doc (or .pdf)

68

mailto:cs_scu@foxmail.com

	Slide 0: Data Structures and Algorithms
	Slide 1: Motivation
	Slide 2: An example
	Slide 3: Algorithm Efficiency
	Slide 4: Algorithm Efficiency (cont.)
	Slide 5: Analysis and measurements
	Slide 6: How to Measure Efficiency?
	Slide 7: How to Measure Efficiency? (cont.)
	Slide 8: How to Measure Efficiency? (cont.)
	Slide 9: Random Access Machine (RAM)
	Slide 10: What does “size” exactly mean?
	Slide 11: Growth rate
	Slide 12: Growth rates illustrated
	Slide 13: Exponential growth
	Slide 14: Examples of Growth Rate
	Slide 15: Examples (cont.)
	Slide 16: The growth rate of a recursive algorithm
	Slide 17: Binary Search
	Slide 18: Binary Search
	Slide 19: The growth rate of a recursive algorithm (cont.)
	Slide 20: The growth rate of a recursive algorithm (cont.)
	Slide 21: The growth rate of a recursive algorithm (cont.)
	Slide 22: The growth rate of a recursive algorithm (cont.)
	Slide 23: The growth rate of a recursive algorithm (cont.)
	Slide 24: The Master Method
	Slide 25: Glossary
	Slide 26: Growth Rates Comparison
	Slide 27: Faster Computer or Algorithm?
	Slide 28: Best, Worst, Average Cases
	Slide 29: Which Analysis to Use?
	Slide 30: Asymptotic Analysis: Big-Oh
	Slide 31: Big-Oh Notation (cont)
	Slide 32: Big-Oh Examples
	Slide 33: Big-Oh Examples
	Slide 34: Big-Oh Examples
	Slide 35: Rules for Big-Oh
	Slide 36: More about Big-Oh notation
	Slide 37: Typical bounds (Big-Oh functions)
	Slide 38: How do we use Big-Oh?
	Slide 39: Nested loops
	Slide 40: Consecutive statements
	Slide 41: Conditional statements
	Slide 42: More nested loops
	Slide 43: More nested loops
	Slide 44: A more intricate example
	Slide 45: A Common Misunderstanding
	Slide 46: Lower Bounds
	Slide 47: “Exact” bounds
	Slide 48: Big-Omega
	Slide 49: Big-Omega Example
	Slide 50: Theta Notation
	Slide 51: Theta Notation (cont.)
	Slide 52: An Alternative Definiton for 
	Slide 53: A Common Misunderstanding
	Slide 54: Simplifying Rules
	Slide 55: Running Time Examples (1)
	Slide 56: Running Time Examples (2)
	Slide 57: Running Time Examples (3)
	Slide 58: Running Time Examples (4)
	Slide 59: Other Control Statements
	Slide 60: Analyzing Problems
	Slide 61: Analyzing Problems: Example
	Slide 62: Multiple Parameters
	Slide 63: Space Bounds
	Slide 64: Space/Time Tradeoff Principle
	Slide 65: Summary: lower vs. upper bounds
	Slide 66: Summary: algorithms vs. Problems
	Slide 67: Conclusion
	Slide 68: Homework 1

