Data Structures and Algorithms

Lecture 3: Algorithm Analysis

Motivation

- Purpose: Understanding the resouce requirements of an algorithm
 - Time
 - Memory
- Runing time analysis estimates the time required of an algorithm as a function of the input size. (upper and lower bounds)
- Usages:
 - Estimate growth rate as input grows.
 - Guide to choose between alternative algorithms.

An example

```
int sum(int set[], int n) {
  int temsum, i;
  tempsum = 1;    /* step/execution 1 */
  for (i=0; i<n; i++)    /* step/execution n+1 */
     tempsum +=set[i]; /* step/execution n */
  return tempsum;    /* step/execution 1 */
}</pre>
```

- Input size: n (number of array elements)
- Total number of steps: <u>2*n + 3</u>

Algorithm Efficiency

- There are often many approaches (algorithms) to solve a problem. How do we choose between them?
- As the cores of computer program design, there are two (sometimes conflicting) goals.
 - To design an algorithm that is easy to understand, code, debug.
 - To design an algorithm that makes efficient use of the computer's resources.

Algorithm Efficiency (cont.)

- Goal (1) is the concern of Software Engineering.
- Goal (2) is the concern of data structures and algorithm analysis.
- When goal (2) is important, how do we measure an algorithm's cost?

Analysis and measurements

- Performance measurement (execution time): machine dependent.
- Performance analysis: machine independent.
- How do we analyze a program independent of a machine?
 - Counting the number steps.

How to Measure Efficiency?

- Empirical comparison (run programs)
- It is difficult to be `fair' due to:
 - Time consuming, especially when there are many alternative algorithms for a problem
 - Depend on your programming skills
 - One program may be finely tuned, while the other is not
 - Depend on the computers running algorithms
 - e.g., CPU, workload, etc.
 - May vary for different test cases
 - One program may favor some test cases

How to Measure Efficiency? (cont.)

- Analytical method: asymptotic algorithm analysis
- Critical resources, factors affecting running time
 - Running time, space (memory or disk)

For most algorithms, running time depends on "size" of the input.

Running time is expressed as T(n) for some function T on input size n.

How to Measure Efficiency? (cont.)

 Primary consideration when estimation an algorithm's performance is the number of basic operations required by the algorithm to process an input of a certain size.

Basic operations

- The time for performing a basic operation does not depend on particular inputs
- E.g., operations for +, -, X, /

Size

The number of inputs processed

Random Access Machine (RAM)

 To analyze the efficiency, we need an abstract machine model

RAM

- Each simple operation takes 1 time step
- Loops and subroutines are not simple operations
- Each memory access takes one time step, no shortage of memory

What does "size" exactly mean?

- Number of inputs strong
 - Strongly polynomial time
- Input length (binary encoded) weak
 - (Weakly) polynomial time
 - Most commonly adopted definition
- Input magnitudes even weaker
 - Pseudo-polynomial time

Growth rate

Growth rate: A program with O(f(n)) is said to have growth rate of f(n). It shows how fast the running time grows when n increases.

Growth rates illustrated

	n=1	n=2	n=4	n=8	n=16	n=32
O(1)	1	1	1	1	1	1
O(logn)	0	1	2	3	4	5
O(n)	1	2	4	8	16	32
O(nlogn)	0	2	8	24	64	160
$O(n^2)$	1	4	16	64	256	1024
$O(n^3)$,	1	8	64	512	4096	32768
$O(2^n)$	2	4	16	235	65536	4294967296

12

Exponential growth

- Say that you have a problem that, for an input consisting of n items, can be solved by going through 2ⁿ cases
- You use Deep Blue, that analyses 200 million cases per second
 - Input with 15 items, 163 microseconds
 - Input with 30 items, 5.36 seconds
 - Input with 50 items, more than two months
 - Input with 80 items, 191 million years

Examples of Growth Rate

Example 1, find the largest value in an array

```
// Find largest value
int largest(int array[], int n) {
  int currlarge = 0; // Largest value seen
  for (int i=0; i< n; i++) // For each val
    if (array[currlarge] < array[i])</pre>
      currlarge = i; // Remember pos
  return currlarge; // Return largest
c: the time for performing a comparison
   operation <, which varies for different
   computers
n: the number of < operations processed
T(n) = c n
```

Examples (cont.)

Example 2: Assignment statement.

$$T(n) = c_1$$

Example 3:

```
sum = 0;
for (i=1; i<=n; i++)
  for (j=1; j<n; j++)
    sum++;
}</pre>
T(n) = c<sub>2</sub> n<sup>2</sup>
```

@ CS311, Hao Wang, SCU

15

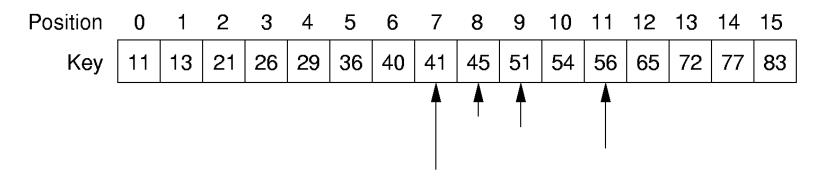
The growth rate of a recursive algorithm

Example 1: int Fact(int n){
if (n ==0) return 1;
return n * Fact(n-1);

 Denote by T(n) the time for computing Fact(n)

```
■ T(n) = T(n-1) + c
= T(n-2) + c + c = T(n-2) + 2c
...
=T(n-n) + nc = c(n+1)
```

Binary Search



How many elements are examined in the worst case?

Binary Search

```
// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int l, int r, int K) {
   if( l==r ) {
       if( array[r] == K ) return r;
                           return -1; //not found
       else
   int m = (1+r)/2; // Check middle
   if (K <= array[m]) // Left half</pre>
       return binary( array, 1, m, K);
   else
                       // Right half
       return binary( array, m+1, r, K);
```

The growth rate of a recursive algorithm (cont.)

Binary search algorithm

```
- T(n) = c + T(n/2)
        = c + c + T(n/4)
        =2c + T(n/2^2)
        =3c + T(n/2^3)
        = c \log n + \mathbf{T}(n/2^{\log n})
        = c log n + T(n/n)
        = c (log n + 1)
```

The growth rate of a recursive algorithm (cont.)

Hanoi Puzzle

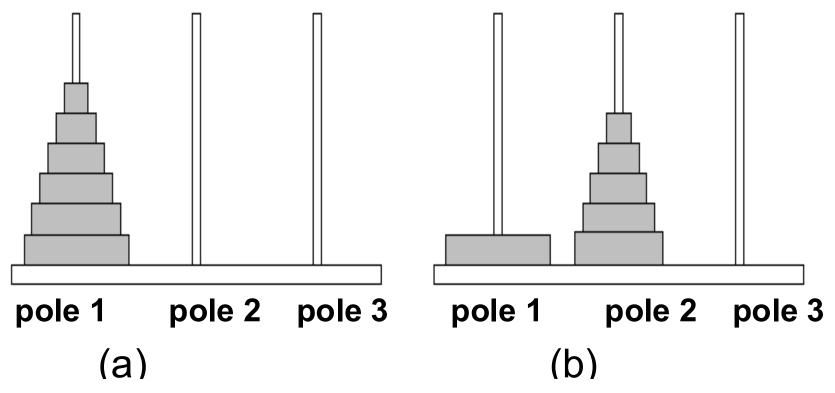


Figure 2.2 Towers of Hanoi example. (a) The initial conditions for a problem with six rings. (b) A necessary intermediate step on the road to a solution.

```
The growth rate of a recursive
                   algorithm (cont.)
//moves n rings from pole s to pole t with the help of pole t
  void Hanoi(int n, int s, int f, int t){
   if(n == 1) printf("move ring 1 from poles %d to %d\n", s, f);
   else{
    // move the upmost n-1 rings in pole s to pole t with the
help of pole f
       Hanoi(n-1, s, t, f);
       printf("move ring %d from %d pole to %d pole\n", n, s, f);
       // moves the n-1 rings in pole t to pole f with the help of
pole s
      Hanoi(n-1, t, f, s);
```

The growth rate of a recursive algorithm (cont.)

Denote by T(n) the running time of Hanoi

```
- T(n)=T(n-1) + c + T(n-1)
       = 2T(n-1) + c
       =2(2T(n-2)+c)+c
       =2^{2}T(n-2)+2c+c
      =2^{3}T(n-3)+2^{2}c+2c+c
       =2^{n}T(n-n)+2^{n-1}C+...+2^{2}C+2C+C
       =2^{n-1}c + ... + 2^{2}c + 2c + c, as T(0)=0
       =(2^{n}-1)c
```

The growth rate of a recursive algorithm (cont.)

- The steps for analyzing the growth rate of a recursive algorithm
 - Derive the recurrence relation of T(n)
 - E.g., T(n)=T(n-1)+c for the factorial function and T(n)=c+T(n/2) for the binary search algorithm
 - Solve the recurrence relation T(n)
 - see the relation with T(n-1) and T(n-2), or T(n/2) and T(n/4), etc, e.g., T(n-1)=T(n-2)+c
 - Expand T(n) with substitute
 - Expand T(n) until the base case of T(0) or T(1)

Sum up some terms

The Master Method

- A "cookbook" method for estimating the growth rate of a recursive algorithm
 - The CLRS book (3rd edition), Sections 4.5

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

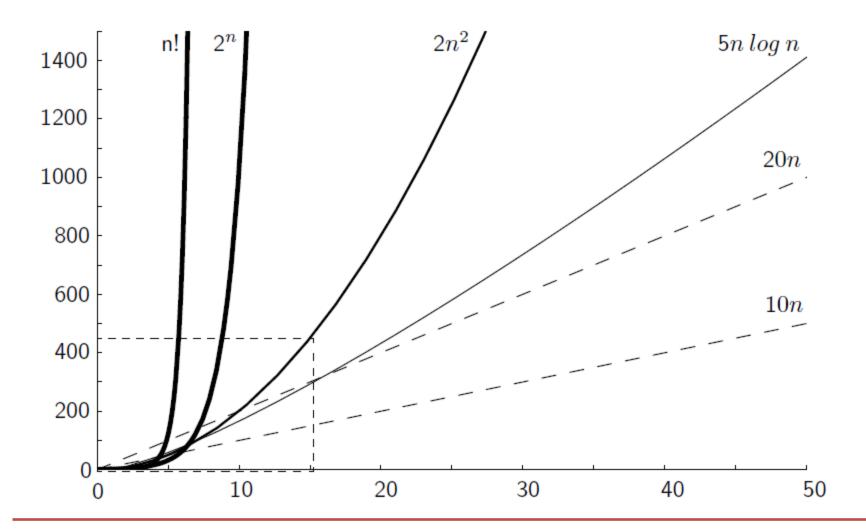
where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Glossary

- growth rate
 - The rate at which the cost of an algorithm grows as the size of inputs grows
- linear growth rate / linear time cost
 - T(n) = cn
- quadratic growth rate
 - $\Gamma(n) = cn^2$
- exponential growth rate
 - $\Gamma(n)=2^n$

Growth Rates Comparison



Faster Computer or Algorithm?

What happens when we buy a computer 10 times faster?

T (<i>n</i>)	n	n'	Change	n'/n
10 <i>n</i>	1,000	10,000	n' = 10n	10
20 <i>n</i>	500	5,000	n' = 10n	10
5 <i>n</i> log <i>n</i>	250	1,842	$\sqrt{10} \ n < n' < 10n$	7.37
$2n^2$	70	223	$n' = \sqrt{10}n$	3.16
2 ⁿ	13	16	n' = n + 3	

Best, Worst, Average Cases

- Not all inputs of a given size take the same time to run.
- Sequential search for K in an array of n integers:
 - Begin at first element in array and look at each element in turn until K is found
- Best case: Find at first position. Cost is 1 compare
- Worst case: Find at last position. Cost is n compares
- Average case: (n+1)/2 compares

Which Analysis to Use?

- Best case analysis is too optimistic
- While average time appears to be the fairest measure, it may be difficult to determine.
 - require knowledge of the distribution of inputs
- When is the worst case time important?
 - Give an upper bound on the running time
 - Important for real-time algorithms
 - Worst case running time usually is in the order of average case running time, with only a few times longer

Asymptotic Analysis: Big-Oh

- Definition: For T(n) a non-negatively valued function, T(n) is **in the set O**(f(n)) if there exist two positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.
- Usage: The algorithm is in O(n²) in [best, average, worst] case.
- Meaning: For all data sets big enough (i.e., n>n₀), the algorithm always executes in less than cf(n) steps in [best, average, worst] case.

Big-Oh Notation (cont)

Big-Oh notation indicates an upper bound on a growth rate

- Example 1: If $\mathbf{T}(n) = 3n^2$ then $\mathbf{T}(n)$ is in $O(n^2)$.
- Example 2: If $\mathbf{T}(n) = 3n^2$ then $\mathbf{T}(n)$ is in $O(n^3)$.
- Use the tightest upper bound:
 - □ While $\mathbf{T}(n) = 3n^2$ is in $O(n^3)$, we prefer $O(n^2)$.

Big-Oh Examples

- Definition does not require upper bound to be tight, though we would prefer as tight as possible
- Example 1: What is Big-Oh of T(n) = 3n+3
 - Let f(n) = n, c = 6 and $n_0 = 1$; T(n) = O(f(n)) = O(n) because $3n+3 \le 6f(n)$ if $n \ge 1$
 - Let f(n) = n, c = 4 and $n_0 = 3$; T(n) = O(f(n)) = O(n) because $3n+3 \le 4f(n)$ if $n \ge 3$
 - Let $f(n) = n^2$, c = 1 and $n_0 = 5$; $T(n) = O(f(n)) = O(n^2)$ because $3n+3 \le (f(n))^2$ if $n \ge 5$
- We certainly prefer O(n).

Big-Oh Examples

- Example 2: Finding value X in an array (average cost).
- How to identify constants c and n_0 ?
- $T(n) = c_s n/2$.
 - □ For all values of n > 1, $c_s n/2 <= c_s n$. Therefore, by the definition, $\mathbf{T}(n)$ is in $\mathbf{O}(n)$ for $n_0 = 1$ and $c = c_s$.

Big-Oh Examples

Example 3: $T(n) = c_1 n^2 + c_2 n$ in average case.

$$c_1 n^2 + c_2 n \le c_1 n^2 + c_2 n^2 \le (c_1 + c_2) n^2$$
 for all $n > 1$.

$$T(n) \le cn^2 \text{ for } c = c_1 + c_2 \text{ and } n_0 = 1.$$

Therefore, $\mathbf{T}(n)$ is in $O(n^2)$ by the definition.

Example 4: T(n) = c. We say this is in O(1).

Rules for Big-Oh

- If T(n) = O(c f(n)) for a constant c, then T(n) = O(f(n))
- If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ then $T_1(n) + T_2(n) = O(max(f(n), g(n)))$
- If $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$ then $T_1(n) * T_2(n) = O(f(n) * g(n))$
- If $T(n) = a_m n^k + a_{m-1} n^{k-1} + ... + a_1 n + a_0$ then $T(n) = O(n^k)$
- Thus
 - Lower-order terms can be ignored.
 - Constants can be thrown away.

More about Big-Oh notation

Asymptotic: Big-Oh is meaningful only when n is sufficiently large
 n ≥ n₀ means that we only care about large size problems.

 Growth rate: A program with O(f(n)) is said to have growth rate of f(n). It shows how fast the running time grows when n increases.

Typical bounds (Big-Oh functions)

- Typical bounds in an increasing order of growth rate
- Function Name

```
O(1), Constant
```

O(log n), Logarithmic

O(n), Linear

O(nlog n), Log linear

 $O(n^2)$, Quadratic

 $O(n^3)$, Cubic

 $O(2^n)$, Exponential

How do we use Big-Oh?

- Programs can be evaluated by comparing their Big-Oh functions with the constants of proportionality neglected. For example,
 - of $T_1(n) = 100000 n$ and $T_2(n) = 9 n$. The time complexity of $T_1(n)$ is equal to the time complexity of $T_2(n)$.
- The common Big-Oh functions provide a "yardstick" for classifying different algorithms.
- Algorithms of the same Big-Oh can be considered as equally good.
- A program with O(log n) is better than one with O(n).

Nested loops

- Running time of a loop equals running time of the code within the loop times the number of iterations.
- Nested Loops: analyze inside out

```
1 for (i=0; i <n; i++)
2 for (j = 0; j< n; j++)
3 k++
```

- Running time of lines 2-3: O(n)
- Running time of lines 1-3: O(n²)

Consecutive statements

 For a sequence S1, S2, .., Sk of statements, running time is maximum of running times of individual statements

```
for (i=0; i<n; i++)

x[i] = 0;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

k[i] += i+j;
```

Running time is: O(n²)

Conditional statements

The running time of

If (cond) S1 else S2

is running time of *cond* plus the max of running times of S1 and S2.

More nested loops

```
1 int k = 0;
2 for (i=0; i<n; i++)
3 for (j=i; j<n; j++)
4 k++</pre>
```

- Running time of lines 3-4: n-i
- Running time of lines 1-4:

$$\sum_{i=0}^{n-1} (n-i) = n(n+1)/2 = O(n^2)$$

More nested loops

```
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<n; j++)
4 k++</pre>
```

- Running time of inner loop: O(n)
- What about the outer loop?
- In m-th iteration, value of i is 2^{m-1}
- Suppose $2^{q-1} < n \le 2^q$, then outer loop is executed q times.
- Running time is O(n log n). Why?

A more intricate example

```
1 int k = 0;
2 for (i=1; i<n; i*= 2)
3 for (j=1; j<i; j++)
4 k++</pre>
```

- Running time of inner loop: O(i)
- Suppose $2^{q-1} < n \le 2^q$, then the total running time:

$$1 + 2 + 4 + \dots + 2^{q-1} = 2^q - 1$$

Running time is O(n).

A Common Misunderstanding

- "The best case for my algorithm is n=1 because that is the fastest." WRONG!
 - ▶ Big-oh refers to a growth rate as n grows to ∞.
 - Best case is defined as <u>which</u> input of size n is cheapest among all inputs of size n.
 - Analyze the growth rate for best/average/worst cases, e.g., $T(n)=2n^2+3n+6$, then obtain the upper bound for the growth rate, e.g., $T(n)=O(2n^2)$

Lower Bounds

 To give better performance estimates, we may also want to give lower bounds on growth rates

Definition (omega): T(n) = Ω(f(n))
 if there exist some constants c and n₀ such that T(n) ≥ cf(n) for all n ≥ n₀

"Exact" bounds

- Definition (Theta): T(n) = Θ(f(n)) if and only if T(n) = O(f(n)) and T(n) = Ω(f(n)).
- An algorithm is Θ(f(n)) means that f(n) is a tight bound (as good as possible) on its running time.
 - on all inputs of size n, time is \leq f(n)
 - On all inputs of size n, time is ≥ f(n)

```
int k = 0;
for (i=1; i<n; i*=2)
for (j=1;j<n; j++)
k++
```

This program is $O(n^2)$ but not $\Omega(n^2)$; it is $\Theta(n \log n)$

Big-Omega

- Definition: For T(n) a non-negatively valued function, T(n) is in the set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that T(n) >= c*g(n) for all $n > n_0$.
- Lower bound on a growth rate
- Meaning: For all data sets big enough (i.e., n > n₀), the algorithm always executes in more than c*g(n) steps.

Big-Omega Example

• $T(n) = c_1 n^2 + c_2 n$.

$$c_1 n^2 + c_2 n >= c_1 n^2$$
 for all $n > 1$.
 $\mathbf{T}(n) >= c n^2$ for $c = c_1$ and $n_0 = 1$.

Therefore, $\mathbf{T}(n)$ is in $\Omega(n^2)$ by the definition.

- T(n) in Ω (n) as $T(n) >= c_2 n$ for n >= 1
- We want the greatest lower bound.

Theta Notation

- When big-Oh and Ω meet, we indicate this by using Θ (big-Theta) notation.
- Definition: An algorithm is said to be $\Theta(h(n))$ if it is in O(h(n)) and it is in $\Omega(h(n))$.
- $T(n) = c_1 n^2 + c_2 n$.
 - \rightarrow $\mathbf{T}(n) = \Theta(n^2)$ as $\mathbf{T}(n)$ in $O(n^2)$ and $\mathbf{T}(n)$ in $\Omega(n^2)$
- For T(n) given by an algebraic equation, we always give a ⊕ analysis

Theta Notation (cont.)

- We may not have $\Theta(n)$ for some T(n)
- Example

$$T(n) = n$$
 for all odd $n>= 1$
 n^2 for all even $n>=1$

- Upper bound
 - **T**(n) in $O(n^2)$
- Lower bound
 - \boldsymbol{D} \boldsymbol{T} \boldsymbol{T} \boldsymbol{T} \boldsymbol{T}
- big-Oh and Ω do not meet

An Alternative Definition for Ω

• T(n) is in Ω (g(n)) if there exists a positive constant c such that T(n) > = cg(n) for an infinite number of values for n.

• Using this definition, T(n) is in $\Omega(n^2)$ for the example in the previous slide.

 Caveat: Not a lower bound for the function, but for a "subsequence"

A Common Misunderstanding

- Confusing worst case with upper bound, and best case with lower bound
- Worst case refers to the worst input from among the choices for possible inputs of a given size.
- Upper bound refers to a growth rate, and the rate may be for the worst case, average case, or the best case

Simplifying Rules

- 1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
 - If T(n) in O(n), then T(n) in $O(n^2)$
- 2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
 - a. Ignore constants
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $(f_1 + f_2)(n)$ is in $O(\max(g_1(n), g_2(n)))$.
 - Drop low order terms, e.g. $\mathbf{T}(n) = n^2 + n$ is in $O(n^2)$
- 4. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$ then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n))$.

Useful for analyzing loops

Running Time Examples (1)

Example 1: a = b;

This assignment takes constant time, so it is $\Theta(1)$.

Example 2:

```
sum = 0;
for (i=1; i<=n; i++)
sum += n;
```

$$T(n) = \Theta(n)$$

Running Time Examples (2)

```
Example 3:
// take time \Theta(1)
sum = 0;
// take time \Sigma i = \Theta(n^2)
for (i=1; i <= n; 'i++)
   for (j=1; j <= i; j++)
      sum++;
// take time \Theta(n)
for (k=0; k < n; k++)
   A[k] = k;
 \mathbf{T}(n) = \Theta(1) + \Theta(n^2) + \Theta(n) = \Theta(n^2) 
  □ Drop low order terms
```

Running Time Examples (3)

Example 4:

```
sum1 = 0;

// takes time n^2 = \Theta(n^2)

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

sum1++;

sum2 = 0;

// takes time \Sigma i = n(n+1)/2 = \Theta(n^2)

for (i=1; i<=n; i++)

for (j=1; j<=i; j++)

sum2++;
```

Running Time Examples (4)

Example 5:

```
sum1 = 0;

for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)

sum1++;

Each inner loop takes time \Theta(n)

How many inner loops?

\Theta(n \log n).
```

Example 6:

```
sum2 = 0;

for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)

sum2++;

Each inner loop takes k basic operations

Total time:

1+2+4+8+...+n/2+n
=\Sigma 2^k \text{ for } k=0 \text{ to log } n
@ CS311, Hao Wang, SCT} 2n-1=\Theta(n)
```

Other Control Statements

- while loop: Analyze like a for loop.
- if statement: Take greater complexity of then/else clauses.
- switch statement: Take complexity of most expensive case.
- Subroutine call: Complexity of the subroutine.

Analyzing Problems

- Upper bound: Upper bound of the best known algorithm.
 - e.g., O(n log n) for known sorting algorithms
- Lower bound: Lower bound for every possible algorithm.
- It is useful to see whether an algorithm is good enough

Analyzing Problems: Example

- Common misunderstanding: No distinction between upper/lower bound when you know the exact running time.
- Example of imperfect knowledge: Sorting
- 1. Cost of I/O: $\Omega(n)$.
- 2. Bubble or insertion sort: $O(n^2)$.
- 3. A better sort (Quicksort, Mergesort, Heapsort, etc.): O(*n* log *n*).
- 4. We prove later that sorting is $\Omega(n \log n)$.

Multiple Parameters

 Compute the rank ordering for all C pixel values in a picture of P pixels.

```
for (i=0; i<C; i++) // Initialize count
  count[i] = 0;
for (i=0; i<P; i++) // Look at all pixels
  count[value(i)]++; // Increment count
  sort(count); // Sort pixel counts</pre>
```

If we use P as the measure, then time is $\Theta(P)$.

• More accurate is $\Theta(P + C \log C)$.

Space Bounds

 Space bounds can also be analyzed with asymptotic complexity analysis.

Time: Algorithm

Space: Data Structure

Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
 - Encoding or packing information Boolean flags
 - Table lookup
 Fibonacci calculation
- Disk-based Space/Time Tradeoff Principle: The smaller you make the disk storage requirements, the faster your program will run.
 - Disk is about 1,000 times slower than memory

Summary: lower vs. upper bounds

- This section gives some ideas on how to analyze the complexity of programs.
- We have focused on worst case analysis.
- Upper bound O(f(n)) means that for sufficiently large inputs, running time T(n) is bounded by a multiple of f(n).
- Lower bound Ω(f(n)) means that for sufficiently large n, there is at least one input of size n such that running time is at least a fraction of f(n)
- We also touch the "exact" bound $\Theta(f(n))$.

Summary: algorithms vs. Problems

- Running time analysis establishes bounds for individual algorithms.
- Upper bound O(f(n)) for a problem: there is some O(f(n)) algorithms to solve the problem.
- Lower bound $\Omega(f(n))$ for a problem: every algorithm to solve the problem is $\Omega(f(n))$.
- They different from the lower and upper bound of an algorithm.

Conclusion

- Growth rate of an algorithm
- The worst, average, and best cases
- The upper and low bounds on a growth rate
 - Big O, big Ω, big Θ
 - Consider only the most important term
 - Ignore low order terms
- The cost of an algorithm vs. the cost of a problem

Homework 1

- See course webpage
- Deadline: midnight before next lecture
- Submit to: cs scu@foxmail.com
- File name format:
 - CS311_Hw1_yourID_yourLastName.doc (or .pdf)