Data Structures and

Algorithms

Lecture 3: Algorithm Analysis

@ CS311, Hao Wang, SCU

Motivation

Purpose: Understanding the resouce
requirements of an algorithm

Time

Memory
Runing time analysis estimates the time
required of an algorithm as a function of the
iInput size. (upper and lower bounds)

Usages:
Estimate growth rate as input grows.
Guide to choose between alternative algorithms.

(@ CS311, Hao Wang, SCU

An example

iInt sum(int set[], int n) {

int temsum, i,

tempsum =1; /* step/execution 1 */

for (i=0; i<n; i++) /* step/execution n+1 */
tempsum +=set[i]; /* step/execution n */

return tempsum; [* step/execution 1 */

}

Input size:_n (number of array elements)
Total number of steps: 2*n + 3

@ CS311, Hao Wang, SCU

Algorithm Efficiency

There are often many approaches
(algorithms) to solve a problem. How do we
choose between them?

As the cores of computer program design,
there are two (sometimes conflicting) goals.

1. To design an algorithm that is easy to
understand, code, debug.

2. To design an algorithm that makes efficient use
of the computer’s resources.

(@ CS311, Hao Wang, SCU 3

Algorithm Efficiency (cont.)

= Goal (1) is the concern of Software
Engineering.

» Goal (2) is the concern of data structures and
algorithm analysis.

* When goal (2) is important, how do we
measure an algorithm’s cost?

@ CS311, Hao Wang, SCU

‘ Analysis and measurements

Performance measurement (execution time):
machine dependent.

Performance analysis: machine
independent.

How do we analyze a program independent
of a machine?

Counting the number steps.

@ CS311, Hao Wang, SCU

‘ How to Measure Efficiency?

Empirical comparison (run programs)
It is difficult to be fair’ due to:

Time consuming, especially when there are many
alternative algorithms for a problem

Depend on your programming skills
One program may be finely tuned, while the other is not

Depend on the computers running algorithms
e.g., CPU, workload, etc.

May vary for different test cases
One program may favor some test cases

(@ CS311, Hao Wang, SCU

‘ How to Measure Efficiency? (cont.)

= Analytical method: asymptotic algorithm analysis

= Critical resources, factors affecting running time
a Running time, space (memory or disk)

For most algorithms, running time depends on “size”
of the input.

Running time is expressed as T(n) for some function
T on input size n.

(@ CS311, Hao Wang, SCU 7

‘ How to Measure Efficiency? (cont.)

Primary consideration when estimation an
algorithm’s performance is the number of
basic operations required by the algorithm
to process an input of a certain size.

Basic operations

The time for performing a basic operation does not
depend on particular inputs

E.g., operations for +, -, X, /
Size
The number of inputs processed

(@ CS311, Hao Wang, SCU

Random Access Machine (RAM)

To analyze the efficiency, we need an
abstract machine model

RAM

Each simple operation takes 1 time step
Loops and subroutines are not simple operations

Each memory access takes one time step, no
shortage of memory

@ CS311, Hao Wang, SCU

‘ What does ““size” exactly mean?

Number of inputs =) strong
Strongly polynomial time

Input length (binary encoded) =) weak
(Weakly) polynomial time
Most commonly adopted definition

Input magnitudes ==) even weaker
Pseudo-polynomial time

(@ CS311, Hao Wang, SCU 10

Growth rate

Growth rate: A program with O(f(n)) is said to
have growth rate of f(n). It shows how fast
the running time grows when n increases.

(@ CS311, Hao Wang, SCU 11

Growth rates illustrated

n=1 [n=2 |n=4 |n=8 |n=16 |[n=32
O(1) 1 1 1 1 1
O(logn) |0 1 2 3 4 5
O(n) 1 2 4 8 16 32
O(nlogn) |0 2 8 24 |64 160
O(n?) 1 4 16 |64 |256 1024
O(n3), 1 8 64 |512 4096 |32768
O(2") 2 4 16 |235 |65536 4294967296

(@ CS311, Hao Wang, SCU

12

Exponential growth

Say that you have a problem that, for an input
consisting of n items, can be solved by going
through 2" cases

You use Deep Blue, that analyses 200 million
CaSes per second

nput with 75 items, 763 microseconds

nput with 30 items, 5.36 seconds

nput with 50 items, more than two months

nput with 80 items, 797 million years

@ CS311, Hao Wang, SCU

Examples of Growth Rate

= Example 1, find the largest value in an array

// Find largest value
int largest (int arrayl[], int n) {

int currlarge = 0; // Largest value seen
for (int i=0; i<n; i++) // For each val
1f (arrayl[currlarge] < arrayl[i])
currlarge = 1i; // Remember pos
return currlarge; // Return largest

}

c: the time for performing a comparison

operation <, which varies for different
computers

n: the number of < operations processed
T(n) = ¢ n

(@ CS311, Hao Wang, SCU 14

Examples (cont.)

= Example 2: Assignment statement.

T(n) = c;
= Example 3:
sum = 0;

for (i=1; i<=n; 1i++)
for (J=1; j<n; Jj++)
sum++;

}

T(n) = c, n?

@ CS311, Hao Wang, SCU

15

}The orowth rate of a recursive algorithm

Example 1: int Fact(int n){
if (n ==0) return 1,
return n * Fact(n-1);

}

Denote by T(n) the time for computing
Fact(n)
T(n)=T(n-1)+c
=T(n-2) +c+c=T(n-2) +2c

=T(n-n) + nc= c(n+1)

(@ CS311, Hao Wang, SCU 16

Binary Search

Positton 0 1 2 3 4 &5 6 7 8 9 10 11 12 13 14 15
Key 1113212629 |36(40|41 45|51 |54 |56 65|72 |77|83

[

* How many elements are examined in the
worst case?

(@ CS311, Hao Wang, SCU 17

Binary Search

// Return position of element in sorted
// array of size n with value K.
int binary(int array[], int 1, int r, int K) {
if(1l==r) {
if(array[r] == K) return r;
else return -1; //not found

}

int m = (1+4r)/2; // Check middle

if (K <= array[m]) // Left half
return binary(array, 1, m, K);

else // Right half
return binary(array, mt+l, r, K);

@ CS311, Hao Wang, SCU 18

The growth rate of a recursive
algorithm (cont.)

Binary search algorithm
T(n)=c+ T(n/2)
=c+c+T(n/4)
=2c + T(n/2?)
=3c + T(n/23)

=clog n + T(n/21°9 »)
=clogn+ T(n/n)
=c(logn +1)

(@ CS311, Hao Wang, SCU

19

‘The growth rate of a recurstve algorithm (cont.)

Hanoil Puzzle

|

| | |
pole 1 pole 2 pole3 pole 1 pole 2 pole3

(a) (b)
Figure 2.2 Towers of Hanoi example. (a) The initial conditions for a problem

with six rings. (b) A necessary intermediate step on the road to a solution.

20

| The growth rate of a recursive
algorithm gcont.)

//moves n rings from pole s to pole 7 with the help of pole ¢
void Hanoi(int n, int s, int f, int t){
if(n == 1) printf("‘move ring 1 from poles %d to %d\n”, s, 1);
elsef

// move the upmost n-7 rings in pole s to pole f with the
help of pole f

Hanoi(n-1, s, t, f);
printf("move ring %d from %d pole to %d pole\n”, n, s, f);

// moves the n-1 rings in pole t to pole f with the help of
pole s

Hanoi(n-1, t, f, s);

}

} (@ CS311, Hao Wang, SCU 21

The growth rate of a recursive
algorithm (cont.)

Denote by T(n) the running time of Hanoi
T(n)=T(n-1) + c + T(n-1)

=2T(n-1) +c

=2(2T(n-2)+c) + C

=22T(n-2)+2c+cC

=23T(n-3)+ 22c + 2c+cC

=27T(n-n)+ 27-1c +...+ 22Cc + 2c+C
=27-1c +...+ 22c + 2c+c, as T(0)=0
=(27-1)c

(@ CS311, Hao Wang, SCU

22

The growth rate of a recursive
algorithm (cont.)

The steps for analyzing the growth rate of a
recursive algorithm

Derive the recurrence relation of T(n)

E.g., T(n)=T(n-1)+c for the factorial function and
T(n)=c+T(n/2) for the binary search algorithm

Solve the recurrence relation T(n)

see the relation with T(n-1) and T(n-2), or T(n/2) and
T(n/4), etc, e.g., T(n-1)=T(n-2)+c

Expand T(n) with substitute

Expand T(n) until the base case of T(0) or T(1)
Sum up some terms

(@ CS311, Hao Wang, SCU

23

The Master Method

A "cookbook" method for estimating the
growth rate of a recursive algorithm

The CLRS book (3" edition), Sections 4.5

Theorem 4.1 (Master theorem)
Leta > 1 and b > 1 be constants, let f(n) be a function, and let 7'(n) be defined
on the nonnegative integers by the recurrence

I'(n) =aT(n/b)+ f(n),

where we interpret n /b to mean either |n/b| or [n/b]. Then T (n) has the follow-
ing asymptotic bounds:

1. If f(n) = O(n'°%9¢) for some constant € > 0, then T'(n) = O(n'°& %),
2. If f(n) = O %), then T'(n) = O(n'°¢%1gn).

3. If f(n) = Q(n'e **€) for some constant € > 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T'(n) = O(f(n)). ~

@ CS311, Hao Wang, SCU -

Glossary

growth rate

The rate at which the cost of an algorithm grows
as the size of inputs grows

linear growth rate / linear time cost
T(n) =cn

quadratic growth rate
T (n) =cn?

exponential growth rate
T (n)=2"

(@ CS311, Hao Wang, SCU 25

Growth Rates Comparison

_ nl] 2" 2n? 5nlogn
1400 |
1200 }
_ 20n
1000 } —
800 r P - -
600 | e 10n
a0l . 7 T
| —
200 | S - T
N
0 ____________'_! 1 1 1 1 1 1
0 10 20 30 40 50

@ CS311, Hao Wang, SCU

‘ Faster Computer or Algorithm?

What happens when we buy a computer 10

times faster?

T(n) n n’ Change n’/n
10n 1,000| 10,000|n’ =10n 10
20n 500| 5,000|{n’=10n 10
5nlogn | 250 1,842|N10n<n’<10n | 7.37
2n2 70 223|n’ =\10n 3.16
2" 13 16|n>’=n+3 | -

(@ CS311, Hao Wang, SCU

Best, Worst, Average Cases

= Not all inputs of a given size take the same
time to run.

= Sequential search for Kin an array of n
Integers:

Begin at first element in array and look at each
element in turn until K'is found

» Best case: Find at first position. Cost is 1 compare

= Worst case: Find at last position. Cost is n compares
= Average case: (n+1)/2 compares

@ CS311, Hao Wang, SCU

Which Analysis to Use?

» Best case analysis is too optimistic

= While average time appears to be the fairest
measure, it may be difficult to determine.

a require knowledge of the distribution of inputs

= When is the worst case time important?

a Give an upper bound on the running time
e Important for real-time algorithms
a Worst case running time usually is in the order of

Iaverage case running time, with only a few times
onger

(@ CS311, Hao Wang, SCU 29

Asymptotic Analysis: Big-Oh

= Definition: For T(n) a non-negatively valued
function, T(n) is in the set O(f(n)) if there
exist two positive constants ¢ and n, such
that T(n) <= cf(n) for all n > n,.

» Usage: The algorithm is in O(n?) in [best,
average, worst] case.

* Meaning: For all data sets big enough (i.e.,
n>n,), the algorithm always executes in less
than cf(n) steps in [best, average, worst] case.

@ CS311, Hao Wang, SCU

Big-Oh Notation (cont)

Big-Oh notation indicates an upper bound on a

growth rate
Example 1: If T(n) = 3n? then T(n) is in O(n?).
Example 2: If T(n) = 3n? then T(n) is in O(n3).

Use the tightest upper bound:
a While T(n) = 3n?is in O(n3), we prefer O(n?).

(@ CS311, Hao Wang, SCU

31

Big-Oh Examples

Definition does not require upper bound to be
tight, though we would prefer as tight as possible

Example 1: What is Big-Oh of T(n) = 3n+3
Letf(n)=n,c=6and ny, = 1;
T(n) = O(f(n)) = O(n) because 3n+3 < 6f(n) if n = 1
Letf(n)=n,c=4and ny, = 3;
T(n) = O(f(n)) = O(n) because 3n+3 <4f(n)ifn=3
Letf(n)=n?, c=1and n, = 5;
T(n) = O(f(n)) = O(n?) because 3n+3 < (f(n))?ifn=5

We certainly prefer O(n).

@ CS311, Hao Wang, SCU

Big-Oh Examples

= Example 2: Finding value X in an array
(average cost).

= How to identify constants c and n, ?

= T(n) = c,nl/2.
a For all values of n > 1, c,n/2 <= c,n.

Therefore, by the definition, T(n) is in O(n) for ny =
1and c=rc..

(@ CS311, Hao Wang, SCU 33

Big-Oh Examples

= Example 3: T(n) = ¢,n° + ¢c,n in average case.

c,N? + Cc,Nn <= ¢c4N? + c,n? <= (¢4 + c,)n? for all n
> 1.

T(n) <=cn?forc=c, +c,and n, = 1.

Therefore, T(n) is in O(n?) by the definition.

= Example 4: T(n) = c. We say thisis in O(1).

(@ CS311, Hao Wang, SCU 34

Rules for Big-Oh

If T(n) = O(c f(n)) for a constant c, then
T(n) =0(f(n))
If T,(n) = O(f(n)) and T,(n)=0(g(n)) then

T4(n) + Ty(n) = O(max(f(n), g(n)))
It T4(n) = O(f(n)) and T5(n)=0(g(n)) then

T4(n) * Ty(n) = O(f(n) * g(n)))
If T(n) = a,nk+a, N+ ...+ a,n +a, then
T(n) =O(n*)
Thus
Lower-order terms can be ignored.

Constants can be thrown away.

@

CS311, Hao Wang, SCU

35

More about Big-Oh notation

Asymptotic: Big-Oh is meaningful only when
n is sufficiently large

n 2 nymeans that we only care about large
size problems.

Growth rate: A program with O(f(n)) is said to
have growth rate of f(n). It shows how fast
the running time grows when n increases.

(@ CS311, Hao Wang, SCU 36

‘ Typical bounds (Big-Oh functions)

Typical bounds in an increasing order of growth
rate

Function Name
O(1), Constant
O(log n), Logarithmic
O(n), Linear
O(nlog n), Log linear
O(n?), Quadratic
O(n3), Cubic
O(2"), Exponential

(@ CS311, Hao Wang, SCU 37

How do we use Big-Oh?

Programs can be evaluated by comparing their
Big-Oh functions with the constants of
proportionality neglected. For example,

T,(n) = 10000 n and T,(n) = 9 n. The time complexity
of T,(n) is equal to the time complexity of T,(n).

The common Big-Oh functions provide a
“yardstick” for classifying different algorithms.

Algorithms of the same Big-Oh can be
considered as equally good.

A program with O(log n) is better than one with
O(n).

@ CS311, Hao Wang, SCU

Nested loops

Running time of a loop equals running time of
the code within the loop times the number of
iterations.

Nested Loops: analyze inside out
1 for (i=0; i <n; i++)

2 for (j=0;j<n;j++)

3 k++

Running time of lines 2-3: O(n)
Running time of lines 1-3: O(n?)

(@ CS311, Hao Wang, SCU

39

Consecutive statements

For a sequence S1, S2, .., Sk of statements,
running time is maximum of running times of
iIndividual statements

for (1=0; i<n; i++)
X[i] = 0;
for (i=0; i<n; i++)
for (j=0; j<n; j++)
K[I] += 1+];
Running time is: O(n?)

(@ CS311, Hao Wang, SCU

40

Conditional statements

The running time of
If (cond) S1
else S2

IS running time of cond plus the max of running
times of S1 and S2.

@ CS311, Hao Wang, SCU

41

More nested loops

1 intk=0;
for (i=0; i<n; i++)
for (j=i; j<n; j++)
k++
Running time of lines 3-4: n-i
Running time of lines 1-4:

ni(n—i)zn(n+1)/2:0(n2)

@ CS311, Hao Wang, SCU

42

More nested loops

1 Intk=0:;
for (i=1; i<n; i*= 2)
for (j=1; j<n; j++)
k++
Running time of inner loop: O(n)
What about the outer loop?
In m-th iteration, value of i is 2™

Suppose 291 < n < 29, then outer loop is
executed g times.

Running time is O(n log n). Why?

(@ CS311, Hao Wang, SCU

43

A more intricate example

1 Intk=0:;
for (i=1; i<n; "= 2)
for (j=1; j<i; j++)
k++
Running time of inner loop: O(i)
Suppose 291 < n < 29, then the total running
time:
1+2+4+ ... 4291 =291
Running time is O(n).

(@ CS311, Hao Wang, SCU

44

‘ A Common Misunderstanding

= “The best case for my algorithm is n=1 because
that is the fastest.” WRONG!
» Big-oh refers to a growth rate as n grows to .

~ Best case is defined as which input of size n is
cheapest among all inputs of size n.

> Analyze the growth rate for best/average/worst cases,
e.g., T(n)=2n%+3n+6, then obtain the upper bound for
the growth rate, e.qg., T(n)=0(2n?)

@ CS311, Hao Wang, SCU

IL.ower Bounds

To give better performance estimates, we

may also want to give lower bounds on
growth rates

Definition (omega): T(n) = Q(f(n))

iIf there exist some constants ¢ and n, such
that T(n) = cf(n) for all n =2 n,

(@ CS311, Hao Wang, SCU 46

“Exact” bounds

Definition (Theta): T(n) = ©(f(n)) if and only if
T(n) =0(f(n)) and T(n) = Q(f(n)).

An algorithm is O(f(n)) means that f(n) is a tight
bound (as good as possible) on its running time.

On all inputs of size n, time is < f(n)
On all inputs of size n, time is = f(n)

int k =0;
for (i=1; i<n; I"=2)
for (j=1;j<n; j++)
k++
This program is O(n?) but not Q(n?); itis ©(n log n)

@ CS311, Hao Wang, SCU

Big-Omega

= Definition: For T(n) a non-negatively valued
function, T(n) is in the set Q2(g(n)) if there
exist two positive constants ¢ and n, such
that T(n) >= c*g(n) for all n > n,.

= Lower bound on a growth rate

» Meaning: For all data sets big enough (i.e., n
> n,), the algorithm always executes in more
than c*g(n) steps.

(@ CS311, Hao Wang, SCU 48

Big-Omega Example
= T(n) = ¢,n? + c,n.

c,n? + c,n >=c¢n?for alln> 1.
T(n) >=cn?forc=c,and ny = 1.

Therefore, T(n) is in Q(n?) by the definition.

» T(n)in Q (n) as T(n) >= c,n for n >= 1
= WWe want the greatest lower bound.

(@ CS311, Hao Wang, SCU

49

Theta Notation

= When big-Oh and QQ meet, we indicate this by
using ® (big-Theta) notation.

= Definition: An algorithm is said to be ®(h(n)) if
it is in O(h(n)) and it is in Q(h(n)).

= T(n) = ¢cn? + c,n.
> T(n)=0(n?)as T(n)in O(n?) and T(n) in Q(n?)

» For T(n) given by an algebraic equation, we
always give a ©® analysis

@ CS311, Hao Wang, SCU

Theta Notation (cont.)

We may not have ©(n) for some T(n)
Example
T(n)= n for all odd n>=1
n? for all even n>=1
Upper bound
T(n) in O(n?)
Lower bound
T(n) in Q (n)
big-Oh and O do not meet

@ CS311, Hao Wang, SCU

An Alternative Definiton for €2

T(n)is in Q (g(n)) if there exists a positive
constant ¢ such that T(n)>=cg(n) for an
infinite number of values for n.

Using this definition, T(n) is in Q(n?) for the
example in the previous slide.

Caveat: Not a lower bound for the function,
but for a "subsequence”

@ CS311, Hao Wang, SCU

‘ A Common Misunderstanding

= Confusing worst case with upper bound, and
best case with lower bound

= Worst case refers to the worst input from
among the choices for possible inputs of a
given size.

= Upper bound refers to a growth rate, and the
rate may be for the worst case, average case,
or the best case

(@ CS311, Hao Wang, SCU 53

Simplifying Rules
If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is
iIn O(h(n)).
. IfT(n)in O(n), then T(n) in O(N?)
. It f(n) is in O(kg(n)) for any constant k > 0O, then f(n)
Is in O(g(n)).

a Ignore constants

. 1t f,(n)isin O(g(n)) and f,(n) is in O(g,(n)), then (f,
+ 1,)(n) is in O(max(g4(n), g2(n))).

.. Drop low order terms, e.g.T(n) = n® + nis in O(n?)

. 1t f,(n)isin O(g4,(n)) and f,(n) is in O(g,(n)) then
f1(m)fx(n) is in O(g4(n)g2(n)).

a) Usefulfor analyzing foops

(@ CS311, Hao Wang, SCU 54

Running Time Examples (1)

= Example 1. a = b;

This assignment takes constant time, so it is
O(1).

= Example 2:

sum :.O; | |
for (1=1; 1<=n; 1++)
sum += n;

T(n) = 6(n)

(@ CS311, Hao Wang, SCU

55

Running Time Examples (2)

= Example 3:
// take time ©(1)

sum = 0;

/| take time Xi = ©(n?)
for (1=1; 1<=n,; 1++)
for (3=1; J<=i; J++)
sum++;

/l take time ®(n)
for (k=0; k<n; k++)
Alk] = k;

" T (n)=0(1)+0(n°)+6(n) = ©(n°)

0 Drop low order terms

CS311, Hao Wang, SCU

56

Running Time Examples (3)

= Example 4:

suml = 0;
/] takes time n2=0(n?)
for (1=1,; 1<=n; 1++)
for (j=1; 7<=n; J++)
suml++;

sum2 = 0;
Il takes time i = n(n+1)/2 =6(n?)
for (1=1; 1<=n; 1++)
for (3=1; 3<=1; J++)
Sum2++;

CS311, Hao Wang, SCU

57

Running Time Examples (4)

= Example 5:
suml = 0;
for (k=1; k<=n; k*=2)
for (3=1; 3<=n; J++)
suml++;

o FEach inner loop takes time O(n)

o How many inner loops?
* 10

a CXn?bSrﬂ.

= Example G:
sum2 = 0;
for (k=1; k<=n; k*=2)
for (3=1; 3<=k; J++)
sum2++;
o Fach inner loop takes k basic operations

o Total time:
1+2+4+8+..+n/2+n

=>2K for k=0tolog-n

@ CS311, Hao Wang, S(%Z n-1 =®(n)

58

Other Control Statements

* while loop: Analyze like a for loop.

» 1f statement: Take greater complexity of
then/else clauses.

= switch statement: Take complexity of most
expensive case.

= Subroutine call: Complexity of the subroutine.

@ CS311, Hao Wang, SCU

Analyzing Problems

= Upper bound: Upper bound of the best
known algorithm.

a e.g., O(n log n) for known sorting algorithms

» Lower bound: Lower bound for every
possible algorithm.

» |t is useful to see whether an algorithm is
good enough

@ CS311, Hao Wang, SCU

60

‘ Analyzing Problems: Example

= Common misunderstanding: No distinction
between upper/lower bound when you know the
exact running time.

= Example of imperfect knowledge: Sorting

1. Cost of I/O: Q(n).

2. Bubble or insertion sort: O(n?).

3. A better sort (Quicksort, Mergesort, Heapsort,
etc.): O(n log n).

4. We prove later that sorting is Q(n log n).

@ CS311, Hao Wang, SCU

Multiple Parameters

= Compute the rank ordering for all C pixel
values in a picture of P pixels.

for (i=0; i<C; 1i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all pixels
count[value (i)]++; // Increment count

sort (count) ; // Sort pixel counts

If we use P as the measure, then time is O(P).
= More accurate is ®(P + C log C).

@ CS311, Hao Wang, SCU 62

Space Bounds

» Space bounds can also be analyzed with
asymptotic complexity analysis.

= Time: Algorithm
= Space: Data Structure

(@ CS311, Hao Wang, SCU

63

‘ Space/Time Tradeoff Principle

= One can often reduce time if one is willing to
sacrifice space, or vice versa.

Encoding or packing information
Boolean flags
Table lookup
Fibonacci calculation
» Disk-based Space/Time Tradeoff Principle:

The smaller you make the disk storage
requirements, the faster your program will run.

> Disk is about 1,000 times slower than memory

@ CS311, Hao Wang, SCU 64

Summary: lower vs. upper bounds

This section gives some ideas on how to
analyze the complexity of programs.

We have focused on worst case analysis.

Upper bound O(f(n)) means that for sufficiently
large inputs, running time T(n) is bounded by a
multiple of f(n).

Lower bound Q(f(n)) means that for sufficiently
large n, there is at least one input of size n such
that running time is at least a fraction of f(n)

We also touch the “exact” bound O(f(n)).

(@ CS311, Hao Wang, SCU 65

Summary: algorithms vs. Problems

Running time analysis establishes bounds for
individual algorithms.

Upper bound O(f(n)) for a problem: there is
some O(f(n)) algorithms to solve the problem.

Lower bound Q(f(n)) for a problem: every
algorithm to solve the problem is Q(f(n)).

They different from the lower and upper
bound of an algorithm.

@ CS311, Hao Wang, SCU

Conclusion

Growth rate of an algorithm
The worst, average, and best cases

The upper and low bounds on a growth rate
Big O, big Q, big ®
Consider only the most important term
Ignore low order terms
The cost of an algorithm vs. the cost of a
problem

@ CS311, Hao Wang, SCU 67

Homework 1

See course webpage
Deadline: midnight before next lecture
Submit to: cs_scu@foxmail.com

File name format:
CS311 _Hw1_yourlD_yourLastName.doc (or .pdf)

@ CS311, Hao Wang, SCU

68

mailto:cs_scu@foxmail.com

	Slide 0: Data Structures and Algorithms
	Slide 1: Motivation
	Slide 2: An example
	Slide 3: Algorithm Efficiency
	Slide 4: Algorithm Efficiency (cont.)
	Slide 5: Analysis and measurements
	Slide 6: How to Measure Efficiency?
	Slide 7: How to Measure Efficiency? (cont.)
	Slide 8: How to Measure Efficiency? (cont.)
	Slide 9: Random Access Machine (RAM)
	Slide 10: What does “size” exactly mean?
	Slide 11: Growth rate
	Slide 12: Growth rates illustrated
	Slide 13: Exponential growth
	Slide 14: Examples of Growth Rate
	Slide 15: Examples (cont.)
	Slide 16: The growth rate of a recursive algorithm
	Slide 17: Binary Search
	Slide 18: Binary Search
	Slide 19: The growth rate of a recursive algorithm (cont.)
	Slide 20: The growth rate of a recursive algorithm (cont.)
	Slide 21: The growth rate of a recursive algorithm (cont.)
	Slide 22: The growth rate of a recursive algorithm (cont.)
	Slide 23: The growth rate of a recursive algorithm (cont.)
	Slide 24: The Master Method
	Slide 25: Glossary
	Slide 26: Growth Rates Comparison
	Slide 27: Faster Computer or Algorithm?
	Slide 28: Best, Worst, Average Cases
	Slide 29: Which Analysis to Use?
	Slide 30: Asymptotic Analysis: Big-Oh
	Slide 31: Big-Oh Notation (cont)
	Slide 32: Big-Oh Examples
	Slide 33: Big-Oh Examples
	Slide 34: Big-Oh Examples
	Slide 35: Rules for Big-Oh
	Slide 36: More about Big-Oh notation
	Slide 37: Typical bounds (Big-Oh functions)
	Slide 38: How do we use Big-Oh?
	Slide 39: Nested loops
	Slide 40: Consecutive statements
	Slide 41: Conditional statements
	Slide 42: More nested loops
	Slide 43: More nested loops
	Slide 44: A more intricate example
	Slide 45: A Common Misunderstanding
	Slide 46: Lower Bounds
	Slide 47: “Exact” bounds
	Slide 48: Big-Omega
	Slide 49: Big-Omega Example
	Slide 50: Theta Notation
	Slide 51: Theta Notation (cont.)
	Slide 52: An Alternative Definiton for 
	Slide 53: A Common Misunderstanding
	Slide 54: Simplifying Rules
	Slide 55: Running Time Examples (1)
	Slide 56: Running Time Examples (2)
	Slide 57: Running Time Examples (3)
	Slide 58: Running Time Examples (4)
	Slide 59: Other Control Statements
	Slide 60: Analyzing Problems
	Slide 61: Analyzing Problems: Example
	Slide 62: Multiple Parameters
	Slide 63: Space Bounds
	Slide 64: Space/Time Tradeoff Principle
	Slide 65: Summary: lower vs. upper bounds
	Slide 66: Summary: algorithms vs. Problems
	Slide 67: Conclusion
	Slide 68: Homework 1

