
@ CS311, Hao Wang, SCU

Data Structures and 
Algorithms

Lecture 4: Lists, Stacks, and Queues (I)



@ CS311, Hao Wang, SCU

Lecture outline

§ Lists, Stacks, Queues
q Concepts, operations, applications
q Logical representation of an ADT versus Physical 

implementation of a DS
q Asymptotic analysis for simple operations

§ Dictionaries: concept and usage

1



@ CS311, Hao Wang, SCU

Data Structure

§ A construct that can be defined within a 
programming language to store a collection 
of data
q one may store some data in an array of integers, 

an array of objects, or an array of arrays

2



@ CS311, Hao Wang, SCU

Abstract Data Type (ADT)

§ Definition: a collection of data together 
with a set of operations on that data
q specifications indicate what ADT operations 

do, but not how to implement them
q data structures are part of an ADT’s 

implementation
§ Programmer can use an ADT without 

knowing its implementation.

3



@ CS311, Hao Wang, SCU

Typical Operations on Data

§ Add data to a data collection
§ Remove data from a data collection
§ Ask questions about the data in a data 

collection. 
q e.g., what is the value at a particular location, and 

is x in the collection?

4



@ CS311, Hao Wang, SCU

Why ADT

§ Hide the unnecessary details
§ Help manage software complexity
§ Easier software maintenance
§ Functionalities are less likely to change
§ Localised rather than global changes

5



@ CS311, Hao Wang, SCU

Illustration

6



@ CS311, Hao Wang, SCU

Lists



@ CS311, Hao Wang, SCU

Why Lists?

§ A list is ALL YOU NEED to achieve anything 
promised to a computer

§ The rest are all about improving efficiency
§ Stacks and Queues: list-like structures

q 1 List, 2 Stacks, 2 Queues are equally capable
§ Then why Stacks and Queues?

q simple, fewer operations
q come in handy in applications

8



@ CS311, Hao Wang, SCU

Lists

§ List: a finite sequence of data items
a1, a2, a3, …, an

§ Lists are pervasive in computing
q e.g. class list, list of chars, list of events

§ Typical operations:
q Creation
q Insert / remove an element
q Test for emptiness
q Find an item/element
q Current element / next / previous
q Find k-th element
q Print the entire list

9



@ CS311, Hao Wang, SCU

List feature

§ Each list element have its position.
q Notation: <a0, a1, …, an-1>

� a0 =10, a1 =9, a2 =7, a3 =20, a4 =8

§ List implementation has a current position.
q Define the list with left and right partitions.

� Either or both partitions may be empty.
q Partitions are separated by a vertical bar.

� <20, 23 | 12, 15>

10



@ CS311, Hao Wang, SCU

An ADT Interface for List

§ Functions
q isEmpty
q getLength
q insert
q delete
q Lookup
q …

§ Data Members
q head
q Size

§ Local variables to 
member functions
q cur
q prev

11



@ CS311, Hao Wang, SCU

List ADT: a case
template <typename E> class List { // List ADT
public:

virtual void clear() = 0; 
virtual void insert(const E& item) = 0;
virtual void append(const E& item) = 0; 
virtual void E remove() = 0;
virtual void moveToStart() = 0; 
virtual void moveToEnd() = 0;
virtual void prev() = 0; // move backward
virtual void next() = 0; // move forward
virtual int length() const = 0; 
virtual int currPos() const = 0; 
virtual void moveToPos(int pos) = 0;
virtual const E& getValue() const = 0;

};

12



@ CS311, Hao Wang, SCU

List ADT Examples

§ List: <12 | 32, 15>
q L.insert(99);
q Result: <12 | 99, 32, 15>

§ Iterate through the whole list:
for (L.moveToStart(); 
L.currPos()<L.length();  

L.next()) {
it = L.getValue();
doSomething(it);

}

13



@ CS311, Hao Wang, SCU

List Find Function

/* Return True if 'k' is in list 'L',
false otherwise */

return_type find(List<int>& L, int k) {
for (L.moveToStart(); 
L.currPos()<L.length(); L.next()) {

if (k == L.getValue()) 
return true; // Found k

}
return false;     // k not found

}

14



@ CS311, Hao Wang, SCU

Two physical implementations

§ Array-based lists
§ Linked lists

15



@ CS311, Hao Wang, SCU

Array-Based List Implementation
§ One simple implementation is to use arrays

q A sequence of n-elements
§ Maximum size is anticipated a priori.
§ Internal variables:

q Maximum size maxSize (m)
q Current size curSize (n)
q Current index cur
q Array of elements listArray

n

curSize

a1 a2 a3 an

listArray 

unused

0 1 2 n-1 m

cur

16



@ CS311, Hao Wang, SCU

Array-Based List Class (1)
template <typename E>
class Alist : public List<E> {
private:  

E *listArray; // array holding elements
int maxSize;  // max size of list
int listSize; // number of list items now
int curr;     // position of cur. element

public:  
// Constructor
Alist(int size=10) { 

maxSize = size;
listSize = curr = 0;
listArray = new E[maxSize];

}

17



@ CS311, Hao Wang, SCU

Array-Based List Class (2)

// Destructor
public: ~Alist(){ delete [] listArray; }
public: void clear()

{ listSize = curr = 0; }

§ Move position functions
public:

void moveToStart() { curr = 0; }
void moveToEnd() { curr = listSize; }
void prev() { if (curr != 0) curr--; }
void next()

{ if (curr < listSize) curr++; }
int length() { return listSize; }
int currPos() { return curr; }

18



@ CS311, Hao Wang, SCU

Array-Based List Class (3)
// Set current list position to 'pos'
public: void moveToPos(int pos) {

if( pos < 0 || pos >= listSize){
cout << "Position out of range" <<endl;
abort();

}
curr = pos;

}

// Return current element
public: E& getValue() const { 

assert(curr >= 0 && curr < listSize); 

return listArray[curr];
}

19



@ CS311, Hao Wang, SCU

Insert an element

§ An insert operation at position 0
<|13, 12, 20, 8, 3, ...>

20



@ CS311, Hao Wang, SCU

Insert

/** Insert "it" at current position */

public: void insert(E it) {
// List capacity exceeded
assert(listSize < maxSize );      
for (int i=listSize; i>curr; i--)

listArray[i] = listArray[i-1];
listArray[curr] = it;
listSize++;

}

21



@ CS311, Hao Wang, SCU

Append

/** Append "it" at the end of the list */

public: void append(E it) { 
// List capacity exceeded
assert(listSize < maxSize); 

listArray[listSize] = it;
listSize++;

}

22



@ CS311, Hao Wang, SCU

Remove

/** Remove and return the current element */

public: E remove() {
if ( curr < 0 || curr >= listSize) 

return NULL;
E it = listArray[curr];
for(int i=curr; i<=listSize-2; i++)

listArray[i] = listArray[i+1];

listSize--;
return it;

}

23



@ CS311, Hao Wang, SCU

Inserting Into an Array

§ While retrieval is very fast, insertion and 
deletion are very slow
q Insert has to shift upwards to create gap

a1 a2 a7 a8a4 a5 a6a3

Step 1 : Shift upwards

8

Size arr

8 a1 a2 a3 a7 a8

Size arr

a4 a5 a6

Example : insert(2, it, arr)

Step 2 : Write into gap

it

Step 3 : Update Size

9

24



@ CS311, Hao Wang, SCU

Coding

struct array_list {
int arr[MAX];
int max;
int size;

} LIST;

void insert(int j, int it, LIST *pl) 
{ // pre : 1<=j<=size+1

int i;

for (i=pl->size; i>=j; i=i-1)
// Step 1: Create gap

{ pl->arr[i+1]= pl->arr[i]; }; 

pl->arr[j]= it;// Step 2: Write to gap

pl->size = pl->size + 1; // Step 3: Update size
}

25



@ CS311, Hao Wang, SCU

Deleting from an Array
§ Delete has to shift downwards to close gap of 

deleted item

Step 1 : Close Gap

9 a1 a2 it a7 a8

size

a5 a6a3 a8

arr

9 a1 a2 it a7 a8

size

a4 a5 a6a3

arr

Example: deleteItem(4, arr)

Step 2 : Update Size

8

Not part of list
26



@ CS311, Hao Wang, SCU

Coding

void delete(int j, LIST *pl) 
{ // pre : 1<=j<=size
for (i=j+1; i<=pl->size; i=i+1)
// Step1: Close gap
{ pl->arr[i-i]=pl->arr[i]; }; 
// Step 2: Update size
pl->size = pl->size - 1;

}

27



@ CS311, Hao Wang, SCU

Two physical implementations

§ Array-based lists
§ Linked lists

28



@ CS311, Hao Wang, SCU

Linked List Approach
§ Main problem of array is the slow deletion/insertion since it 

has to shift items in its contiguous memory
§ Solution: linked list where items need not be contiguous 

with nodes of the form

§ Sequence (list) of four items < a1,a2 ,a3 ,a4 > can be 
represented by:

item next

ai

a1 a2 a3 a4

head represents
null

29



@ CS311, Hao Wang, SCU

A Sample Linked List

30



@ CS311, Hao Wang, SCU

Pointer-Based Linked Lists

§ A node in a linked list is usually a struct
struct Node
{ int item

Node *next;
}; //end struct

§ A node is dynamically allocated
Node *p;
p = malloc(sizeof(Node));

A node

31



@ CS311, Hao Wang, SCU

Pointer-Based Linked Lists

§ The head pointer points to the first node in a 
linked list

§ If head is NULL, the linked list is empty
q head=NULL

§ head=malloc(sizeof(Node))

32



@ CS311, Hao Wang, SCU

Linked List Node Class

// Singly linked list node
template <typename E> class Link {
public:

E element;
Link *next;
// Constructors
Link(const E* elemval, Link* nextval = NULL)

{element = elemval; next = nextval;}
Link(Link* nextval = NULL) {

next = nextval;
}

}

33



@ CS311, Hao Wang, SCU

Linked List Class (1)

template <typename E>
class LList : public List<E> {
private:

Link<E>* head; // pointer to list header
Link<E>* tail; // pointer to last element
Link<E>* curr; // access to current element
int cnt;  // size of list

public:
//Constructor
LList() {

curr = tail = head = new Link<E>(NULL);
cnt = 0;

}

34



@ CS311, Hao Wang, SCU

Linked List Class (2)
public: void clear() { 

curr= head->next; //keep the head node
Link<E>* tmp;
while( curr != NULL){

tmp = curr;
curr = curr->next;
delete tmp;

}
head->next = NULL;
curr = tail = head;
cnt = 0;

}

~LList(){
clear();
delete head;

}

35



@ CS311, Hao Wang, SCU

Linked List Class (3)

public: 
void moveToStart() { curr = head; }
void moveToEnd() { curr = tail; }
int length() { return cnt; }
void next() {

if (curr != tail) { curr = curr->next; }
}

const E& getValue() const { 
// Nothing to get;
assert(curr->next != NULL);

return curr->next->element;
}

36



@ CS311, Hao Wang, SCU

Insertion

37



@ CS311, Hao Wang, SCU

Code case of Insert/Append

// Insert "it" at current position
void insert(E& it) {

Link<E>* tmp = new Link<E>(it, curr->next);
curr->next = tmp;

if (tail == curr) tail = curr->next; 
cnt++;

}

// Append "it" to list
void append(E& it) { 

tail->next = new Link<E>(it, NULL);
tail = tail->next;
cnt++;

}

38



@ CS311, Hao Wang, SCU

Removal

39



@ CS311, Hao Wang, SCU

Code case of remove
/** Remove and return current element */
E remove() {

// if no elements;
assert(curr->next != NULL);

if (tail == curr->next) tail = curr; 

// tmp points to the node to be deleted
Link<E>* tmp = curr->next;  
E it = tmp->element;

curr->next = tmp->next;
delete tmp;
cnt--;

return it; 
}

40



@ CS311, Hao Wang, SCU

Previous

/** Move curr one step left;
no change if already at front */

void prev() {
if (curr == head) return;

Link<E>* tmp = head;
// March down list until previous found
while (tmp->next != curr)

tmp = tmp->next;
curr = tmp;

}

41



@ CS311, Hao Wang, SCU

Get/Set Position
/** Return position of the current element */
int currPos() {

Link<E>* tmp = head;
int i;
for (i=0; tmp != curr; i++)

tmp = tmp->next;
return i;

}

/** Move down list to "pos" position */
void moveToPos(int pos) {

// if position is out of range;
assert( pos>=0 && pos<cnt);

curr = head;
for(int i=0; i<pos; i++)

curr = curr->next;
}

42



@ CS311, Hao Wang, SCU

Traverse a Linked List

§ Reference a node member with the -> 
operator
p->item;

§ A traverse operation visits each node in the 
linked list
q A pointer variable cur keeps track of the current 

node
for (Node *cur = head;                                     

cur != NULL; cur = cur->next)
x = cur->item;

43



@ CS311, Hao Wang, SCU

Traverse a Linked List

The effect of the assignment cur = cur->next

44



@ CS311, Hao Wang, SCU

Delete a Node from a Linked List

§ Deleting an interior/last node
prev->next=cur->next;

§ Deleting the first node
head=head->next;

§ Return deleted node to system
cur->next = NULL;
free(cur);
cur=NULL;

45



@ CS311, Hao Wang, SCU

Delete a Node from a Linked List

Deleting a node from a linked list

Deleting the first node
46



@ CS311, Hao Wang, SCU

Insert a Node into a Linked List

§ To insert a node between two nodes
newPtr->next = cur;

prev->next = newPtr;

Inserting a new node 
into a linked list

47



@ CS311, Hao Wang, SCU

Insert a Node into a Linked List

§ To insert a node at the beginning of a 
linked list
newPtr->next = head;
head = newPtr;

Inserting at the beginning 
of a linked list

48



@ CS311, Hao Wang, SCU

Insert a Node into a Linked List

§ Inserting at the end of a linked list is not a 
special case if cur is NULL
newPtr->next = cur;
prev->next = newPtr;

Inserting at the end of a 
linked list

49



@ CS311, Hao Wang, SCU

Look up

BOOLEAN lookup (int x, Node *L)

{  if (L == NULL)

return FALSE

else if (x == L->item)

return TRUE

else

return lookup(x, L-next);

}

50



@ CS311, Hao Wang, SCU

Array-based lists versus linked list
§ The memory addresses of the 

elements in an array list are in 
increasing order
q Assume that the start address of the 

array is 1,000
q The addresses of elements 13, 12, 

20, 8, 3 are 1,000, 1,004, 1,008, 
1,012, and 1,016, respectively

§ The addresses of the elements 
after current position increases by 
4 with an insertion, if an int 
varaible takes 4 bytes memory

51



@ CS311, Hao Wang, SCU

Array-based lists vs linked list (cont.)
§ The memory addresses of the 

elements in a linked list have 
no relationship with their 
positions in the list
q Allocated by the operating 

system
� e.g., the memory addresses of 20, 23, 

12, 15 are 1,000, 940, 1076, 40

§ The addresses of the 
elements already  in the list 
will not change after an 
insertion

52



@ CS311, Hao Wang, SCU

Comparison of Implementations

Array-Based Lists:
§ Insertion and deletion are Q(n).
§ Prev and direct access are Q(1).
§ Array must be allocated in advance.
§ No overhead if all array positions are full.

Linked Lists:
§ Insertion and deletion are Q(1).
§ Prev and direct access are Q(n).
§ Space grows with number of elements.
§ Every element requires overhead.

53



@ CS311, Hao Wang, SCU

Space Comparison

“Break-even” point:

DE = n(P + E);

n = DE   
P + E

E: Space for data value.
P: Space for pointer.
n: number of elements in the list
D: Number of elements in array with D>= n

54



@ CS311, Hao Wang, SCU

Freelist
§ System new and delete are slow.
§ Consider there are many interwoven insert 

and remove operations
list.insert(10),  list.remove(); list.remove();…,
list.insert(20),…

§ Solution
q keep the nodes removed in a free list by yourself, 

and do not call the system delete
q Allocate a new node from the free list first if there 

are some; otherwise, call the system new
q Delete all nodes in the free list when no needing

§ See the textbook for details

55



@ CS311, Hao Wang, SCU

Doubly Liked Lists

§ Frequently, we need to traverse a sequence 
in BOTH directions efficiently 

§ Solution : Use doubly-linked list where each 
node has two pointers

next

forward traversal

Doubly Linked List.

x1 x4x2
head x3

backward traversal

prev

56



@ CS311, Hao Wang, SCU

Doubly linked list node

template <typename E> class DLink{
public:

E element;
DLink* next;
DLink* prev;

//Constructors
DLink(const E& it, DLink* p, DLink* n){

element = it;
prev = p;  next = n;

} 
DLink(DLink* p=NULL, DLink* n=NULL){

prev = p;
next = n;

} 
};

57



@ CS311, Hao Wang, SCU

Doubly Linked Insert

58



@ CS311, Hao Wang, SCU

Doubly Linked Insert

// Insert "it" at current position

void insert(E it) {
DLink<E> *tmp = new DLink<E>(it, curr, 
curr->next );

curr->next = tmp;

DLink<E> *pNext = tmp->next;
pNext->prev= tmp;

cnt++;
}

59



@ CS311, Hao Wang, SCU

Doubly Linked Remove

60



@ CS311, Hao Wang, SCU

Doubly Linked Remove

// Remove and return current element
E remove() {

if (curr->next == tail) return NULL; 

DLink<E> *tmp = curr->next;
E it = tmp->element;

curr->next = tmp->next;
(tmp->next)->prev = curr;

cnt--; 
delete tmp;
return it; 

}

61



@ CS311, Hao Wang, SCU

Circular Linked Lists

§ May need to cycle through a list repeatedly, 
e.g. round robin system for a shared resource   

§ Solution : Have the last node point to the first 
node

x1 x2 xn. . .

Circular Linked List.

head

62



@ CS311, Hao Wang, SCU

An application of lists  -- merge sort

38 3 9 82 1027 43

63



@ CS311, Hao Wang, SCU

An application of lists  -- merge sort

64



@ CS311, Hao Wang, SCU

Merge Sort

1. If there is only one number in the list, return;
2. Split a list into two sub-lists with almost equal 

length
3. Recursively sort  the two sub-lists, where the 

numbers in each sub-lists are in increasing 
order

4. Merge the two sub-lists into one list such that 
the number the merged list are in increasing 
order

65



@ CS311, Hao Wang, SCU

How to merge two sorted linked-lists?

66



@ CS311, Hao Wang, SCU

Summary 
§ Array-based lists

q Fast random access
q Insertion and removal take long time

§ Linked lists
q Slow for random access
q Fast insertion and removal

§ Singled and doubly linked list
q The notion of curr
q Add head and/or tail nodes for convenient coding
q Pay attention to special cases

67


