
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 5: Lists, Stacks, and Queues (II)

@ CS311, Hao Wang, SCU

An application of lists -- merge sort

1

@ CS311, Hao Wang, SCU

Merge Sort

1. If there is only one number in the list, return;
2. Split a list into two sub-lists with almost equal

length
3. Recursively sort the two sub-lists, where the

numbers in each sub-lists are in increasing
order

4. Merge the two sub-lists into one list such that
the number the merged list are in increasing
order

2

@ CS311, Hao Wang, SCU

How to merge two sorted linked-lists?

3

@ CS311, Hao Wang, SCU

Merge two sorted linked-lists
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next){}
* };
*/

4

@ CS311, Hao Wang, SCU

Merge two sorted linked-lists
/** Recursion Method */
class Solution{
public:
ListNote* mergeTwoLists(ListNode* l1, ListNote* l2) {
if(!l1){ // l1 is NULL

return l2;
} else if(!l2) { // l2 is NULL

return l1;
} else if(l1->val < l2->val) {

l1->next = mergeTwoLists(l1->next, l2);
return l1;

} else { // l1->val >= l2->val
l2->next = mergeTwoLists(l1, l2->next);
return l2;

}
}

};

5

@ CS311, Hao Wang, SCU

Recursion Method

𝑚𝑒𝑟𝑔𝑒(𝑙1, 𝑙2) =

𝑙2, 𝑙1 is NULL
𝑙1, 𝑙2 is NULL

𝑚𝑒𝑟𝑔𝑒 𝑙1 → 𝑛𝑒𝑥𝑡, 𝑙2 , 𝑖𝑓 𝑙1 → 𝑣𝑎𝑙 < 𝑙2 → 𝑣𝑎𝑙
𝑚𝑒𝑟𝑔𝑒 𝑙1, 𝑙2 → 𝑛𝑒𝑥𝑡 , 𝑖𝑓 𝑙1 → 𝑣𝑎𝑙 ≥ 𝑙2 → 𝑣𝑎𝑙

Complexity:
- Time: O(n+m)
- Space: O(n+m)

Function

6

@ CS311, Hao Wang, SCU

Merge two sorted sub-lists
/** Iteration Method */
class Solution{
public:
ListNote* mergeTwoLists(ListNode* l1, ListNote* l2) {
ListNote* tem = new ListNode(0);
ListNode* ans = tem;
while (l1!=NULL && l2!=NULL)
{ if (l1->val < l2->val)

{ tem->next = l1; l1 = l1->next; }
else
{ tem->next = l2; l2 = l2->next; }

}
if (l1!=NULL) tem->next = l1;
if (l2!=NULL) tem->next = l2;
return ans->next;

}
};

7

@ CS311, Hao Wang, SCU

Iteration Method

Algorithm steps
1. Initialize two lists tem, ans;
2. Iteratively merge two nodes;
§ Merge the small one, and move pointer forward

3. Merge tail the last non-NULL list;
§ Return the result.

Complexity:
- Time: O(n+m)
- Space: O(1)

8

@ CS311, Hao Wang, SCU

How to merge k sorted sub-lists?

§ Merge k sorted linked lists and return it as one
sorted list. Analyze and describe its complexity.

Example:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[
1->4->5,
1->3->4,
2->6

]
merging them into one sorted list:
1->1->2->3->4->4->5->6

9

@ CS311, Hao Wang, SCU

Stacks

@ CS311, Hao Wang, SCU

What is a Stack?

§ A stack is a list with the restriction that
insertions and deletions can be performed in
only one position, namely, the end of the list,
called the top.

§ Operations: PUSH (insert) and POP (delete)
pop push(o)

6
7
2
3Top

11

@ CS311, Hao Wang, SCU

Stacks
§ LIFO: Last In, First Out

12

@ CS311, Hao Wang, SCU

Stacks

Notation:
§ Insert: PUSH
§ Remove: POP
§ The accessible element is called TOP.

§ Restricted form of list: Insert and remove only
at front of list.

13

@ CS311, Hao Wang, SCU

Stack ADT
// Stack abstract class
template <typename E> class Stack {
public:

void clear();

/** Push an element onto the top of the stack.
@param it Element being pushed onto the stack.*/
void push(E& it);

/** Remove and return top element.
@return The element at the top of the stack.*/

E pop();

/** @return A copy of the top element. */
E topValue();

/** @return Number of elements in the stack. */
public int length();

};

14

@ CS311, Hao Wang, SCU

Stack ADT Interface

§ The main functions in the Stack ADT are (S is the stack)
boolean isEmpty(); // return true if empty

boolean isFull(S); // return true if full

void push(S, item); // insert item into stack

void pop(S); // remove most recent item

void clear(S); // remove all items from stack

Item top(S); // retrieve most recent item

Item topAndPop(S); // return & remove most recent item

15

@ CS311, Hao Wang, SCU

Sample Operation

Stack S = malloc(sizeof(stack));

push(S, “a”);

push(S, “b”);

push(S, “c”);

d=top(S);

pop(S);

push(S, “e”);

pop(S);

s

a
b

c

top

e

d

16

@ CS311, Hao Wang, SCU

Implementation of Stacks

§ Array-based stacks
§ Linked stacks

17

@ CS311, Hao Wang, SCU

Array-Based Stacks
// Array-based stack implementation

private:
int maxSize; // Maximum size of stack
int top; // Index for top element
E *listArray; // Array holding elements

Questions:
§ Which end is the top of the stack?

q Array[0] is the bottom and array[top-1] is the top
§ Where does "top" point to?

q Array index for the top element currently in the stack.
§ What is the cost of the operations?

q Q(1) for each push or pop operation.

18

@ CS311, Hao Wang, SCU

Implementation by Array

§ Use Array with a top index pointer as an implementation of stack

E F

0 1 7 8 92 3 4 5 6

A B C D

top

StackAr

arr

A

19

@ CS311, Hao Wang, SCU

Code

20

@ CS311, Hao Wang, SCU

More code

21

@ CS311, Hao Wang, SCU

More code

22

@ CS311, Hao Wang, SCU

Linked Stacks
// Linked stack implementation
private:

int size; // Number of elements
Link<E>* top; // Pointer to first element

§ Push/PoP operations
q Elements are inserted and removed only
from the head of the list.

§ Which end is the top of the stack?
q Linked list head

§ Where does "top" point to?
q The new/next link node for stores the top nodes

§ What is the cost of the operations?
q Q(1)

23

@ CS311, Hao Wang, SCU

Implementation by Linked Lists

§ Can use a Linked List as implementation of stack

Top of Stack = Front of Linked-List

StackLL

lst

a1 a2 a3 a4

head

LinkedListItr

24

@ CS311, Hao Wang, SCU

Code

struct Node {
int element;
Node * next;

};
typedef struct Node * STACK;

25

@ CS311, Hao Wang, SCU

More code

26

@ CS311, Hao Wang, SCU

More Code

27

@ CS311, Hao Wang, SCU

Effects of Linked Stacks

28

@ CS311, Hao Wang, SCU

Array-based vs Linked Stacks

§ Time comparison
q Operations for both two stacks take constant time.

§ Space comparasion
q Array-based stack has an initially fixed-size array.
q Linked stack can shrink and grow but requires

the overhead of a link field for every element.

29

@ CS311, Hao Wang, SCU

Applications of Stacks

§ Many application areas use stacks:
q line editing
q bracket matching
q postfix calculation
q function call stack

30

@ CS311, Hao Wang, SCU

Line Editing
§ A line editor would place characters read into a

buffer but may use a backspace symbol (denoted by
¬) to do error correction

§ Refined Task
q read in a line
q correct the errors via backspace
q print the corrected line in reverse

Input :

Corrected Input :

Reversed Output :

abc_defgh¬2klpqr¬¬wxyz

abc_defg2klpwxyz

zyxwplk2gfed_cba

31

@ CS311, Hao Wang, SCU

The Procedure
§ Initialize a new stack
§ For each character read:

q if it is a backspace, pop out last char
entered

q if not a backspace, push the char into
stack

§ To print in reverse, pop out each char
for output

Input : fgh¬r¬¬yz

Corrected Input :

Reversed Output :

fyz

zyf Stack

f

g

hr

y

z

32

@ CS311, Hao Wang, SCU

Bracket Matching Problem

§ Ensures that pairs of brackets are properly matched

• An Example: {a,(b+f[4])*3,d+f[5]}

• Bad Examples:

(..)..) // too many closing brackets

(..(..) // too many open brackets

[..(..]..) // mismatched brackets

33

@ CS311, Hao Wang, SCU

Informal Procedure
Initialize the stack to empty
For every char read

if open bracket then push onto stack
if close bracket, then

return & remove most recent item
from the stack

if doesn’t match then flag error
if non-bracket, skip the char read

Example

{a,(b+f[4])*3,d+f[5]}

Stack

{

(

[

)

}

]

[]

34

@ CS311, Hao Wang, SCU

Postfix Calculator
§ Computation of arithmetic expressions can be efficiently

carried out in Postfix notation with the help of a stack.

Infix - arg1 op arg2
Prefix - op arg1 arg2
Postfix - arg1 arg2 op

(2*3)+4

2*(3+4) 2 3 4 + *

2*3+4

infix 2 3 * 4 +

postfix

35

@ CS311, Hao Wang, SCU

Informal Procedure
Initialize stack S
For each item read.

If it is an operand,
push onto the stack

If it is an operator,
pop arguments from stack;
perform operation;
push result onto the stack

2

3

4

Stack

Expr
2
3
4
+

*

push(S, 2)
push(S, 3)
push(S, 4)
arg2=topAndPop(S)
arg1=topAndPop(S)
push(S, arg1+arg2)
arg2=topAndPop(S)
arg1=topAndPop(S)
push(S, arg1*arg2)

3+4=7

2*7=14

36

@ CS311, Hao Wang, SCU

Summary

§ The ADT stack operations have a last-in,
first-out (LIFO) behavior.

§ Stack can be implemented using array-
based or linked lists.

§ Stack has many applications
q algorithms that operate on algebraic

expressions
q a strong relationship between recursion and

stacks exists.

37

@ CS311, Hao Wang, SCU

Queues

38

@ CS311, Hao Wang, SCU

What is a Queue?
§ Like stacks, queues are lists. With a queue,

however, insertion is done at one end whereas
deletion is done at the other end.

§ Queues implement the FIFO (first-in first-out)
policy. E.g., a printer/job queue!

§ Two basic operations of queues:
q dequeue: remove an item/element from front
q enqueue: add an item/element at the back

dequeue enqueue

39

@ CS311, Hao Wang, SCU

Queue ADT

§ Queues implement the FIFO (first-in first-out) policy
q An example is the printer/job queue!

enqueue(o)
dequeue()

isEmpty()
getFront() createQueue()

40

@ CS311, Hao Wang, SCU

Sample Operation

Queue *Q;

enqueue(Q, “a”);

enqueue(Q, “b”);

enqueue(Q, “c”);

d=getFront(Q);

dequeue(Q);

enqueue(Q, “e”);

dequeue(Q);

q

front back

a b c e

d

41

@ CS311, Hao Wang, SCU

Queue ADT interface

§ The main functions in the Queue ADT are (Q is the
queue)

void enqueue(it, Q) // insert it to back of Q

void dequeue(Q); // remove oldest item

Item getFront(Q); // retrieve oldest item

boolean isEmpty(Q);// checks if Q is empty

boolean isFull(Q);// checks if Q is full

void clear(Q);// make Q empty

}

42

@ CS311, Hao Wang, SCU

Implementation of Queues

§ Array-based queue
§ Circular queue
§ Linked queue

43

@ CS311, Hao Wang, SCU

Array-based Queue

§ Use Array with front and back/rear pointers as
implementation of queue

Queue

arr 0 1 7 8 92 3 4 5 6

A B C D E F G

front
back/rear

44

@ CS311, Hao Wang, SCU

Array-based Queue

§ The queue `drift’ towards to the end of the
array

§ Cannot enqueue when rear = (maxSize-1),
even if there are some space left

45

@ CS311, Hao Wang, SCU

Circular Queue
§ To implement queue, it is best to view arrays as circular structure

0 1 7 8 92 3 4 5 6

A B C D E F G

front
back

front

back
A

B

C

D
EF

G

0

1

7

8

9

2

3

45
6

Circular view of arrays.

46

@ CS311, Hao Wang, SCU

How to Advance

§ Both front & back pointers should make advancement until they
reach end of the array. Then, they should re-point to beginning of
the array

front = adv(front);
back = adv(back);

int adv(int p)
{ return ((p+1) % maxsize);
}

Alternatively, use modular arithmetic:

mod operator

int adv(int p)
{ int r = p+1;

if (r<maxsize) return r;
else return 0;

}

upper bound of the array

47

@ CS311, Hao Wang, SCU

Circular Queue-cont.

§ Enqueue
q rear = (real+1)%maxSize;
q Place the new element at the array with index rear

§ Dequeue
q Serve the first element in the queue, i.e., array[front]
q front=(front+1)%maxSize;

§ Initially
q front = 0, rear = maxSize-1;

48

@ CS311, Hao Wang, SCU

Effects of Circular Queue
§ The position of the element next to the i-th element

is (i+1)%maxSize.
§ Length=(rear+size-front+1)%maxSize

q where % is the modulus operator.

49

@ CS311, Hao Wang, SCU

Sample

Queue *Q;

enqueue(Q, “a”);

enqueue(Q, “b”);

enqueue(Q, “c”);

dequeue(Q);

dequeue(Q);

enqueue(Q, “d”);

enqueue(Q, “e”);

dequeue(Q);

a

Q

F=front
B=back

F

B

b c d

F

B B B

F F

B B

e

50

@ CS311, Hao Wang, SCU

0

1

23

4

5

6 7

Dequeue B

C

0

1

23

4

5

6 7

Dequeue A

B
C

0

1

23

4

5

6 7

A

B, C enqueue

0

1

23

4

5

6 7

A enqueue

frontfront

A
B

C
rear

rear

0

1

23

4

5

6 7
front

rear

Empty queue

front
rear

A
B

rear front

0

1

23

4

5

6 7

Dequeue C

C
rear

front

empty queue：(rear +1)%maxSize = front

51

@ CS311, Hao Wang, SCU

0

1

23

4

5

6 7

C
rear front

Enqueue D,E,F,G,H,I,J

0

1

23

4

5

6 7

C
rear

front

D
E

F G
H
I

J

Full queue：(rear+1)%maxSize = front

Cannot distinguish an empty queue and a full queue !
52

@ CS311, Hao Wang, SCU

An empty or a full queue?

§ Solution 1: count how many elements in the
queue
q Empty queue if and only if the value of the

counter is 0
q Full queue iff the value of the counter is equal to

the size of the array
§ Solution 2: allocate an array with one more

space for storing no more than n elements,
i.e., the size of the array is n+1
q The textbook adopts this solution.

53

@ CS311, Hao Wang, SCU

Checking for Full/Empty State

What does (F==B) denote?

F
B

Queue
Empty
State

c de

B
F

f Queue
Full
State

size 0 size 4

c de

B F

Alternative - Leave a Deliberate Gap!

No need for size field.

Full Case : (adv(B)==F)

54

@ CS311, Hao Wang, SCU

Linked Queue

§ Can use Linked Lists as underlying implementation of Queues

a1 a2 a3 a4

head tail

Queue

lst

LinkedList addTail

55

@ CS311, Hao Wang, SCU

Code

struct Node {
int element;
Node * next;

};

struct QUEUE {
Node * front;
Node * rear;

};

56

@ CS311, Hao Wang, SCU

More code

57

@ CS311, Hao Wang, SCU

More code

CELL is a list node

58

@ CS311, Hao Wang, SCU
59

Application of Queue(1)- Buffer

Low speed devices

High speed processor

Queues for data buffer

59

@ CS311, Hao Wang, SCU
60

Message producerMessage consumer

enqueuedequeue

Application of Queue(2)- Message Queue

§ Asynchronous collaboration between different
components.
q E.g., message queue in Windows OS.

60

@ CS311, Hao Wang, SCU

Dictionaries

§ A key-value pair
§ ADT implementation

q Array-based list
q Linked list

§ Operations
q sorting
q finding
q inserting
q removing

61

@ CS311, Hao Wang, SCU

Summary
§ The definition of the queue operations

gives the ADT queue first-in, first-out
(FIFO) behavior

§ The queue can be implemented by linked
lists or by arrays

§ There are many applications
q Printer queues,
q Telecommunication queues,
q Simulations,
q Etc.

62

@ CS311, Hao Wang, SCU

Conclusions
§ Array-based lists

q Fast random access
q Insertion and removal take long time

§ Linked lists
q Slow for random access
q Fast insertion and removal

§ Singled and doubly linked list
q The notion of curr
q Add head and/or tail nodes for convenient coding
q Pay attention to special cases

63

@ CS311, Hao Wang, SCU

§ Stacks (LIFO, last-in first-out)
q Two implementations

� array-based and linked stacks
q Fast operation with time complexity: Q(1)

§ Queues (FIFO, first-in first-out)
q Three implementations

� Array-based, circular, and linked queue
q Fast operation with time complexity: Q(1)

§ Wide applications of stacks and queues

Conclusions (cont'd)

64

@ CS311, Hao Wang, SCU

Homework 2

§ See course webpage
§ Deadline: midnight before next lecture
§ Submit to: cs_scu@foxmail.com
§ File name format:

q CS311_Hw2_yourID_yourLastName.doc (or .pdf)

65

mailto:cs_scu@foxmail.com

