Data Structures and

Algorithms

Lecture 9: Searching, and Hashing

@ CS311, Hao Wang, SCU

Outline of Today's Lecture

Searching
Unsorted and Sorted Arrays
Self-Organizing Lists
Bit Vectors for Representing Sets
Hashing
Hash Tables
Hash Functions
Open and Closed Hashing
Operations

(@ CS311, Hao Wang, SCU

Problem definition

Suppose we have a collection L of n records of the form
(ky, 1h), (kp, 1), ..., (ky, I), where [is information

associated with key k; from record(k;, [;) for 1 < j < n.

Given a query K, the Search Problem is to locate a
record (kg, I;) in L such that k, = K (if one exists).

Two types of query problems

An exact-match query is a search for the record whose
key values matches a specified key value.

A range query is a search for all records whose key
value falls within a specified range of key values.

(@ CS311, Hao Wang, SCU

Search algorithms

Three general approaches
Sequential and list methods
Direct access by key value -- hashing
Tree indexing methods (next lecture)

(@ CS311, Hao Wang, SCU

Search in unsorted arrays (1/2)

The sequential search algorithm
Basic idea: search from the beginning to the end

The simplest form of search

K 0 2% (P 7 [

Best case: O(1)

Worst case: O(n)

Average case. O(n/2)= ®(n)
Sometimes called linear search.

(@ CS311, Hao Wang, SCU

‘ Search in unsorted arrays (2/2)

A simple implementatin for sequential search

/* Find the position in A that holds value K, if any

does */

int sequential (int A[], int size, 1int K) {

for (int i=1; i<size; 1++) // For each element

if (A[i] == K) // if we found it
// return this position

return 1;
return the array length

return size; // Otherwise,

(@ CS311, Hao Wang, SCU

Search 1n sorted arrays

Sequential search is somewhat slow. ©(n)

One way to reduce search time is to preprocess
the records by sorting them.

Given a sorted array, an obovious improvement

over simple linear search is to test if the current
element in L Is greate than K.

<
ki

K |9 3| 9...[27(33[47] 82

(@ CS311, Hao Wang, SCU 6

Search in sorted arrays - Jump search (1/3)

Jump search

Suppose we look first position i and find that K is
bigger, then we rule out position i as well as

position 0 to i — 1.

>
k;

K |47 3| 9...[27(33[47] 82

What if we carry this to the extreme and look first
at the /ast position in L and find that K is bigger?

Then we know in one comparison that Kis not in L.

(@ CS311, Hao Wang, SCU .

Search in sorted arrays — Jump search (2/3)

Basic idea of Jump search algorithm

For a jump size j, we check every j-th elementin L.
- L

So long as K is greater than the checking values, we
continue on.

Otherwise, we do a linear search on the piece of length j-1
that we know brackets K if it is in the list.

A typical divide and conquer algorithm.
What is the right amount to jump?

(@ CS311, Hao Wang, SCU 8

Search in sorted arrays - Jump search (3/3)

Define m such that mj < n < (m + 1)j, then the total
cost of this algorithm is at most m +j — 1 3-way
comparison. (3-way: less, equal, or greater)
Therefore, the cost to run the algorithm on n items
with a jump of size j is

n
T(n,j)=m+j—1=[7]+j—1

Minimize the cost:
Take the derivative and solve for T'(n,j) = 0 to find the
minimum, which is j = \/n.

In this case, the worst case cost is roughly 2/n.

(@ CS311, Hao Wang, SCU

Search in sorted arrays - Binary search (1/3)

= Basic idea: recursion

// Return the position of an element

// If K is not in A, return A.length.

public static int binarySearch(int[]
int low =

0;

int high = A.length - 1;

while(low <= high) {

//

in sorted array A with value K.

A, int K) {

Stop when low and high meet

int mid = (low + high) / 2;

//

Check middle of subarray

if(Almid] < K) low = mid + 1; L
else if(A[mid] > K) high = mid - 1; //
else return mid;

}

return A.length;

}

v

//

//

In right half
In left half
Found it

Search value not in A

(11

13

21|26 (29|36 |40 (41|45 |51

54 |56 | 65|72 | 77 83]

0

1

SR SR I R S

10 11 12 13 14 15

@ CS311, Hao Wang, SCU

10

Search in sorted arrays - Binary search (2/3)

An optimal algorithm for a sorted list.
Time complexity: ©(log n)
If the data are not sorted, using binary search

requires to pay the cost of soring the data, e.g.,
®(log n) by a balanced binary search tree (BST).

Two special forms of binary search (see book):
Dictionary or interpolation search
Quadratic binary search

(@ CS311, Hao Wang, SCU

‘ Performance Comparison (n=400M)

Running time of the sequential search is about 200 ms
Running time of the binary search is only 0.002 ms
Binary search is about 100,000 times faster for n=400M

Sequential search, time: 188.933 (m11l1-seconds)

Binary search, time: 0.002 (mll1-seconds)

(@ CS311, Hao Wang, SCU

Self-organizing lists (1/6)

Self-organizing lists are simply linked-lists of data

It reorganizes the data such that items that have been
accessed recently or more frequently, are moved
closer to the front of the list.

Motivation for sorting by access frequency

Most searchable data sets contain some items that are
accedded frequently, and many items that are
accessed rarely.

Can speed up sequential search.

(@ CS311, Hao Wang, SCU 13

‘ Self-organizing lists (2/06)

= Usually, the frequencies are unknown.

= Self-organizing lists use a heuristic for
deciding how to redorder the list.

o Similar to the rules for managing buffer pools.

E.g.,

head tail

IRU|l——>{ 13 5-2 10 [30 [20 [40 [7

LRU—»‘1 3 (5|2 |10 |30 (20 [40 | ¥

(@ CS311, Hao Wang, SCU

14

Self-organizing lists (3/6)

Basic ideas

modify the order of records within the list based on
the actual pattern of record access, by moving a
found key nearer to the front of the list (insert and
delete operations can stay the same).

We consider three heuristics
Frequency Count
Move-To-Front
Transpose

(@ CS311, Hao Wang, SCU 15

* Frequency Count

o When a record is
found, move forward
the front of the list if
its number of
accesses becomes
greater than a
record preceding it.

Self-organizing lists (4/6)

MaQM=OPHGOQEGE@MUO H

ABCDEFGH
FABCDEGH
FDABCEGH
FDABCEGH
FDGABCEH
FDGEABCH
FGDEABCH

FGDEABCH
FGDEABCH

FGDEABCH
FGDEABCH

FGDEABCH
FGDEABCH

ABCDEFGH
00000100
00010100
00010200
00010210
00011210
00011220

00011320
10011320

10021320
10021420
10021430

10022430

= NN FEF W OoORFE W dJdF 0o

(@ CS311, Hao Wang, SCU

16

Self-organizing lists (5/6)

= Move-To-Front

2 When a record is
found, move it to the
front of the list.

M Q=OPpPHOQEGQRMDODH

ABCDEFGH
FABCDEGH
DFABCEGH
FDABCEGH
GFDABCEH
EGFDABCH
GEFDABCH
FGEDABCH
AFGEDBCH

DAFGEBCH
FDAGEBCH
GFDAEBCH
EGFDABCH

b WO OmMWINI AN O o

@ CS311, Hao Wang, SCU

17

Self-organizing lists (6/06)

= Transpose

2 When a record is
found, swap it with the
record ahead of it.

M Qm=mOPpP @EFEQGQQRPMO N

ABCDEFGH
ABCDFEGH
ABDCFEGH
ABDFCEGH
ABDFCGEH
ABDFCEGH
ABDFCGEH
ABFDCGEH
ABFDCGEH
ABDFCGEH
ABFDCGEH
ABFDGCEH

ABFDGECH

SN oY bR BRI 0O

@ CS311, Hao Wang, SCU

18

Example: self-organizing lists

Text compression and transmission

By the move-to-front rule

If the word has been seen before, transmit the
current position of the word in the list. Move the word
to the front of the list.

If the word is seen for the first time, transmit the
word. Place the word at the front of the list.

The car on the left hit the car I left

The car on 3 left hit 3 5 I 5

(@ CS311, Hao Wang, SCU 19

Bit vectors for representing sets

Representing sets using a bit array with a bit
position allocated for each potential member.

1 denotes 'in the set’; 0 denote 'not in the set'.
Example: a set of primes

[0011010100010100J
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benefits by the logical bit-wise operations
set union, intersection, and difference

(@ CS311, Hao Wang, SCU 20

Hashing

@ CS311, Hao Wang, SCU

21

Hashing

Given n records with unique keys,
insert search delete

Unsorted list O (1) O(n) O(n)
Sorted array ® (n) O(logn) O(n)
Balanced BST ©O(logn) ©(logn) ©(log n)
Magic array ©® (1) O(1) O(1)

Sufficient "magic":
Use key to map array index for a record in ® (1) time
Search by direct access based on key value

(@ CS311, Hao Wang, SCU

Data collection

Data collection is a set of records (static or
dynamic)
Each record consists of two parts

A key: a unique identifier of the record.
Data item: it can be arbitrarily complex.

The key is usually a number, but can be a
string or any other data type.

Non-numbers are converted to numbers when
applying hashing.

(@ CS311, Hao Wang, SCU

Basic ideas of hashing

Use hash function to map keys into positions
In a hash table

|deally

If data item or element e has key kand h is
hash function, then e is stored in position h(k)
of table

To search for e, compute h(k) to locate
position. If no element/item, dictionary does
not contain e.

(@ CS311, Hao Wang, SCU

A simple Hash Table

= The simplest kind of hash table is an array of
records (elements).

= This example array has 701 cells.

(0] (1] [2] [3] [4] [S] [700]

An array of cells

@ CS311, Hao Wang, SCU

Following the example

We want to store a dictionary of Object
Records, no more than 701 objects

Keys are Object ID numbers, e.g.,
506643548

Hash function: h(k) maps k(=ID) into distinct
table positions 0-700

Operations: insert, delete, and search

(@ CS311, Hao Wang, SCU

Complexity (ideal case)

Why hashing and hash table?
It is very efficient.

O(D) time to initialize hash table (D number
of positions or cells in hash table)

O(1) time to perform insert, remove, search

(@ CS311, Hao Wang, SCU

Limitations of the Simple Hash Table

The maximum number in array A must be <
c*n, where c is constant

Otherwise, the hash table may be too large
Keys must be integers

But may be strings, real numbers, etc. in a
real application

(@ CS311, Hao Wang, SCU

‘ Hash Table and Hash Function

A hash table is an array of some fixed size, storing the
records

Each key is mapped into some /ocation in the range 0O to
size-1 in the table

The mapping is called a hash function hash table

0

hash function:
index = h(key)

>

key space (e.g., integers, strings) size —1

(@ CS311, Hao Wang, SCU

Use the Hash Table

= Each record has a special field, i.e., its key.

= In this example, the key is a long integer field
called Number. [4]

(0] (1] [2] [3] [4] ~15] [700]

@ CS311, Hao Wang, SCU

Use the Hash Table

= The number is a object's identification
number, and the rest of the record has
information about the object. (4]

(0] (1] [2] [3] [4] 71S] [700]

@ CS311, Hao Wang, SCU

Use the Hash Table

= When a hash table is in use, some spots
contain valid records, and other spots are
Ilempty"-

(0] (1] [2] [3] [4] [S] [700]

@ CS311, Hao Wang, SCU

Inserting a New Record

= |In order to insert a new record, the key must
somehow be mapped to an array index using
a hash function.

= The index is called the hash value of the key.

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

‘ Three design considerations of hash

Design a general hash function h(K) that maps
a record with key K to a location in hash table

Given any two records with keys K, and K, the
probability that they are mapped to the same
location in the hash table should be as small as
possible, i.e.,

Pr[h(K;) = h(K;)] is very small

Otherwise, many records are mapped to the same

location, which is called a collision

Solve the collision problem

(@ CS311, Hao Wang, SCU

Hash functions

Popular hash functions: hashing by division

h(k) = k mod D, where D is number of cells in hash
table

Example: hash table with 701 cells
h(k) = k mod 701

h(80) = 80 mod 701 = 80

h(1000) = 1000 mod 701 = 299

(@ CS311, Hao Wang, SCU

' Hash Function desigh — a simple mod

function
Consider n=5 keys
A[5]=11, 35, 54,99, 42
Allocate an array Table[10] with size M=10
Hash function h(key) = key % 10
Place 11 at location 11%10=1 in hash table

11 42 54 35 99

index 0 1 2 3 4 5 6 7 8 9
But there may be many collisions

Consider other 5 keys
B[5]=11, 21, 31,41, 51
Each key is mapped to location 1

(@ CS311, Hao Wang, SCU 36

" Hash Function design — a better hash
function

Consider n=5 keys
B[5]=11, 21, 31, 41, 51

Allocate an array Table[10] with size M=10

Hash function by mid-square, given a key K,
Location is the middle r digits of value K?
112=121, 21%=441, 312=961, 41%=1681, 512=2601
Consider the middle digit, i.e., r=1

51 11 21 31 41

index 0 1 2 3 4 5 6 7 8 9

The location is correlated with all digits in the key,
not just the lowest digit.

(@ CS311, Hao Wang, SCU 37

Hash function for a string-A simple way

Given a string of characters, e.g. "‘AZ”

First consider the ASCII value of each character
E.g., 65 for “A”, 90 for “Z”

Then, sum up the ASCII values of the characters
E.g., 65+90 = 155

Finally, mod M, where M is the size of the hash

table
E.g., 155 %10 = 5;

String "AZ" is mapped to location 5 in the hash

table

(@ CS311, Hao Wang, SCU

Collisions

* Problem: collision
o two keys may be mapped to the same location

o Can we ensure that any two distinct keys get
different locations?

mNo, if the size of the key space is larger than
the size of the hash table

(@ CS311, Hao Wang, SCU

Collisions - example

= Suppose we insert a new record, with a hash
value of 2.

= This is called a collision, because there is
already another valid record at [2].

i

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Collision Resolution Techniques

Two strategies:
(1) Open hashing, a.k.a. separate chaining
(2) Closed hashing, a.k.a. open addressing

Difference has to do with whether collisions
are stored outside the table (open hashing) or
whether collisions result in storing one of the
records at another slot in the table (closed
hashing).

(@ CS311, Hao Wang, SCU

‘ Open hashing / Separate Chaining

= |nstead of a hash table, use a table of linked list

= keep a linked list of records with keys mapped to
the same location

T

=

0 0 [4—=
1 81 1 1
2 R

h(K) = Kmod 10 3 1.
4 64 4 [1=
5 25 [4+—
6 36 16 1
7
8
9

49 9 1

(@ CS311, Hao Wang, SCU

Separate Chaining (cont.)

To search a record with key K
Calculate h(K), takes ©® (1) time

Search the linked list at table[h[K]], which
takes © (d) time, d is the list size

Average list size a= % n: # of records, m:
hash table size
Searching time is ® (1+a) on average

(@ CS311, Hao Wang, SCU

Improve performance of separate
chaining

Searching time is © (1+a) on average

o= % usually is called the load factor

When the a exceeds a threshold, e.g. 1.5,
double the table size

Rehash each record in the old table into the
new table

Then, the value of a decreases
Searching time is ® (1+a)= ©(1) on average

(@ CS311, Hao Wang, SCU

Separate Chaining (cont.)

= Advantage: implementation is easy for inserting,
searching, and deleting

= Disadvantage: memory allocation for a new
node will slow down the program

(@ CS311, Hao Wang, SCU

| Closed hashing / Probing hash tables

= Basic ldea:
o Toinsert a key K, compute h(K). If location h(K)
Is empty, insert it there

o If a collision occurs, probe alternative locations
h,(K), h,(K), ..., until an empty location is found
« hy(K) = ,
a f(.): collision resolution strategy

= All data are stored inside the table, hash table size
must be larger than the number of records
al.e., m>n

1 Otherwise, no alternative locations can be found

(@ CS311, Hao Wang, SCU

Probing hash tables

Three approaches
Linear Probing
Quadratic Probing
Double Hashing

(@ CS311, Hao Wang, SCU

47

‘ Solution 1: Linear Probing

fis a linear function of /: i.e., f(i)=i
Locations are probed sequentially
hi(K) = (h(K) + 1) % TableSize
Insertion:
Let K be a new key to be inserted, compute
h(K) first
Fori=0to TableSize-1
compute L = (h(K) +1) % TableSize
Table[L] is empty, then we put K there and stop.

(@ CS311, Hao Wang, SCU

Example of linear probing

= hy(K) = (h(K) + i) %om
o E.qg, inserting keys 89, 18, 49, 58, 69 with h(K)=K % 10
= A clustering problem: small clusters grow to big clusters

Empty Table After 89 After 18 After 49 After 58 After 69 :
To insert 49,
0 49 49 49 probe T[9], T[0]
1 58 58
2 69
3 To insert 58,
probe T[8], T[9],
: TI0], T[]
5
6
= To insert 69,
probe T[9], T[O],
8 18 18 18 18 _ T[1], T[2]
2 89 89 89 89 89

Solution 2: Quadratic Probing

- f(i) = i2
- h(K) = (h(K)+ i2) % TableSize, e.g., h(K) = K % 10

o E.g., inserting keys 89, 18, 49, 38, 69

Empty Table After 89 After 18 After 49 | After 58 After 69 To insert 49,
0 49 49 49 probe T[9], T[O]
1
2 58 58
3 69 To insert 58,
4 probe T[8], T[9],
T[(8+22) mod 10]
5
6 To insert 69,
7 probe T[9],
8 18 18 18 18 T[(9+1) mod 10],
9 89 89 89 89 89 | T[(9+22) mod 10]

QQuadratic Probing

Two keys with different initial hash locations will
have different probe sequences

h(k1)=30, h(k2)=29, with difference only one
probe sequence for k1: 30, 31, 34, 39, ...
probe sequence for k2: 29, 30, 33, 38,...

If the table size m is prime, then a new key can

always be inserted if the table is at least half
empty

(@ CS311, Hao Wang, SCU

Solution 3: Double Hashing

Use two hash functions: h() and h2()

f(i) =1 * h2(K)

h:. (K)=(h(K)+£f (1)) Sm
E.g. h2(K) = R - (K mod R), with R is a prime
smaller than m

The probe sequence £(1) ,£(2),.. IS
independent of its initial location h(K)

(@ CS311, Hao Wang, SCU

- £(i) =i * h2(K);

Double Hashing

“ h;(K)=(h(K)+£(1))%m; h(K)=K3%m
h2(K) = R - (K mod R),
= Example: m=10, R = 7 and insert keys 89, 18, 49, 58, 69

(@ CS311, Hao Wang, SCU

Empty Table After 89 After 18 After 49 After 58 After 69 To insert 49,
0 69 h2(49)=7, 2nd
1 probe is T[(9+7)
5 mod 10]
3 58 58 To insert 58,
4 h2(58)=5, 2nd
5 probe is T[(8+5)
6 49 49 49 mod 10]
7 To insert 69,
8 18 18 18 18 h2(69)=1, 2nd
9 89 89 89 89 probe is T[(9+1)

mod 10]

Choice of hash function h?2 ()

cannot be 0, as i*0=0

For any key K, must be relatively prime to the
table size m. Otherwise, we may probe only a fraction of
the table entries.
e.g., if h(K)=0 and h2 (K) = m/2, (mis even), then we will
only examine entries Table[0], Table[m/2], and nothing
else!
One solution is to make m prime, and choose R to be a
prime smaller than m, and set

Quadratic probing, however, does not require the use of
a second hash function
likely to be simpler and faster in practice

(@ CS311, Hao Wang, SCU

‘ The performance of probing hash tables

n
Load factor a= — <lasn<m

Collision probability is a for each probe

nsert successfully at 15! probe with probability 1-a
nsert successfully at 2" probe with prob. a(1-a)
nsert successfully at 3 probe with prob. a? (1-a)

Insert successfully at k" probe with prob. a*' (1-a)

Average probe times are 1—ia

Insert and search average time is ® (1—ia) =0O(1)ifais
small, e.g., a=0.5

(@ CS311, Hao Wang, SCU

| Performance Comparison (n=400M)

= Sequential search : 200 ms
= Binary search: 0.002 ms
= Hash search: < 0.001 ms

(@ CS311, Hao Wang, SCU

Insert

Apply hash function to get a location
Try to insert key at the location

Deal with collision

(@ CS311, Hao Wang, SCU

Inserting a New Record

= Let us find the hash value for 580625685

What is (580625685 mod 701) ?

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Inserting a New Record

= Let us find the hash value for 580625685

580625685 mod 701 =3 -

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Inserting a New Record

The hash value is used to find the location of
the new record.

(0] (1] [2] [3] [4] [15] [700]

@ CS311, Hao Wang, SCU

Search

= Apply the hash function to get a location
= Look at that location.
= Deal with collision.

(@ CS311, Hao Wang, SCU

Searching for a Key

= The data that's attached to a key can be

found fairly quickly.

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Searching for a Key

= Calculate the hash value.
= Check that location of the array for the key.

The hash value of
— 701466868 1s 2
[0] [1] [2] [3] 1[4]1 [S] [700]

@ CS311, Hao Wang, SCU

Searching for a Key

= Keep moving forward until you find the key,
or you reach an empty spot.

The hash value of
701466868 1s 2

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Searching for a Key

= Keep moving forward until you find the key,
or you reach an empty spot.

The hash value of
701466868 1s 2

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Searching for a Key

= Keep moving forward until you find the key,

or you reach an empty spot. -

The hash value of
701466868 1s 2

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Searching for a Key

= When the item is found, the information can
be copied to the necessary location.

The hash value of
701466868 1s 2

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Deleting a Record

= Records may also be deleted from a hash

table.

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Deleting a Record

= Records may also be deleted from a hash
table.

= But the location must not be left as an
ordinary "empty spot" since that could
Interfere with searches.

(0] (1] [2] [31 [4] [15] [700]

@ CS311, Hao Wang, SCU

Deleting a Record

= Records may also be deleted from a hash table.

= But the location must not be left as an ordinary
"empty spot” since that could interfere with
searches.

= The location must be marked in some special
way so that a search can tell that the spot used

to have something in it.
(01 [11 [2] [31 [41 [S] [700]

@ CS311, Hao Wang, SCU

Conclusions

Sequential search: ®(n) on average
improve to ®(1/n) by Jump search with ordered arrays
Binary search: ®(log n)
Self-organizing lists, and Bit vectors
Hashing: ©(7) on average
Hash table size usually is prime.
Hash functions
mod function, mid-square, sum for strings
Collision solutions
Separating chaining
Probing hash tables
linear probing, quadratic probing, double hashing

(@ CS311, Hao Wang, SCU

