Data Structure and Algorithm Analysis

Chapter 11: Graph

Slides by: Yuhao Yi, and Tristan Wenzheng Xu

College of Computer Science

Sichuan University

:

2
3
4
5
6
/

Contents

. Applications of graphs
. Notations in graphs

. Graph representations in computers

. Graph traversals
. Topological sort —
. Shortest Path

. Minimum Spanning Tree

Study Four
common

problems
in graphs

1. Graphs have wide, wide applications

m Modeling relationships (families, organizations)
Oe.g., Model friendships in social networks

m Modeling connectivity in computer networks

m Representing maps
OE.g., google map

m Finding paths from start to goal

...

m Binary trees, B trees, B+ trees are special
graphs

m Connectivity

2. Notations in Graphs

Unweighted graph vs. weighted graph - Graph
Undirected graph vs. directed graph properties

Degrees<=The importance of vertices in a graph
Path and cycle

Relationship

Path length bet
citween

m Connected components vertices In a
m Acyclic directed graph graph

Definition of an unweighted graph
m A graph G = (V, E) consists of a set V of vertices,

and a set of edges E, such that each edge in E is
a connection between a pair of vertices in V

on=IVI, m=IEl O, @

m Example: given the vertices

V= {Vla Vo, V3, V4}

and the edges @ @

E = {{vi, vaf, {vi, vaf, {v3, vt}
the graph has three edges connecting four
vertices

Weighted Graphs

m Each edge may be associated with a weight

m This could represent distance, time, energy
consumption, cost, etc

Directed Graphs

m Each edge in a graph may be associated with a
direction

® An edge from v; to v; does not imply an edge from v; to
Vi

m All edges are ordered pairs (v;, v;) where this denotes
a connection from v, to v,

®m Such a graph is termed a directed graph

m For example, .
V={1,2,3,4} @ .2

E=1(1,2), (1, 3), (4, 3);

—0O

Directed Graphs

m |f there is an edge from v, fo v, and an edge
from v, to v;, plotted as

O—0O O—0O

or

0——"0 @—@

Directed Graphs vs. undirected graphs

m Graphs without directions are termed undirected
graphs

® An undirected graph can be considered as a
directed graph with each edge on both directions

Degrees in an undirected graph
m We usually care how many neighbors of each vertex,
OEspecially the vertices with many neighbors

m The degree of a vertex is the number of neighbors

In and Out Degrees in a directed graph

m The in (incoming) degree of a vertex is the number
of its incoming neighbors

m The out (out-going) degree of a vertex is the number
of its out-going neighbors

@/C\/X

2/0

@ ®’I/1

Paths

m A path from v, to v,is an ordered sequence of
vertices

(Vo, Vi, Vo, evs Vi)
where {v. ,,v;}isanedgefori=1, ...,k
m Examples of paths from 1 to 5:
(1,2, 5)
(1,4, 7, 5)
(1,2,4,1, 2, 5)

Simple Paths

m A simple path has no repetitions other than
perhaps the first and last vertices

O(1,2,5) simple path
o1, 2,4, 1, 2, 5) not simple path

m A simple path where the first and last vertices are
equal is said to be a cycle

De.g., (1,2, 4, 1)

Path length

m The length of an unweighted path is the number
of edges in the path

m The length of a weighted path is the weighted
sum of the edges in the path

O The length of the path 1—4 —7 in the

following graph is 5.1 + 3.7 = 8.8
1 3.5 >

14

Connectivity

m Two vertices v;, v; are said to be connected if

there is a path between v, to v,

m A graph is connected if there is a path between
any two vertices

1 2 1 @
” AV
6 7 (6)

Connected graph Disconnected graph

Connected Components
m A graph may be disconnected
m But a subgraph may be connected

® A maximum connected subgraph of a graph is called
a connected component (CQC), e.g.,

O0CC1 with vertices 0, 1, 2, 3, 4
O0CC2 with vertices 5, and 6
O0CC3 with only vertex 7

5 © O

() OO :

Directed Acyclic Graphs

m A directed acyclic graph (DAG) is a directed
graph which has no cycles

m Two example DAGs

e

m Not a DAG

Applications of Directed Acyclic Graphs

m Applications of DAGs include:

O Family trees

O Course pre-requisites

O Folders and sub folders in an Operation system
O...

3. Representations of a graph in computers

m Adjacency Matrix
m Adjacency List

Representations for an Undirected graph

a) Graph structure b) Adjacency matrix for the graph c) Adjacency list for the
graph

2 1 1
3 1 1
4| 1 1 1
(a) (b)

0 —t—] 1 —t— 4

1 1+ 0] —+»{3 | =4

21 1+ 3 ——» 4

3 —t—] 1 —] 2

4 —+—» 0O —t—»] 1 —t— 2

20

2

epresentations for a directed graph

Representation Space costs

m Adjacency Matrix:
O6(n?)
On=IVI and m=|El
O Suitable for dense graphs
m Adjacency List
Ooe (n+m)
Om < n(n-1)
O Suitable for sparse graphs
OMost real graphs are sparse

22

4. Graph Traversals

m Some applications require visiting every vertex in the
graph exactly once, in some special order based on
graph topology

m Two orders of graph traversal
O Breadth-first search (BFS)
O Depth-first search (DFS)

23

Breadth-first search (BFS)

m |t starts at a root vertex s, the root at level 0

m Visit first the root vertex in level O, then vertices
in level 1, vertices in level 2,...

m Level means the shortest distance to the root
m Need an auxiliary queue in the search

BES example in a tree

m A tree is a special graph
m BFS starts from vertex 1

ONONO
6O QU

ST 1 12

Order in which the nodes are visited

BFS example in a graph, starts from vertex s

m Queue Q@ stores the vertices visited, but has not
explored their neighbors

m Once the neighbors of a vertex is explored, it is
removed out from queue Q

w

8

A 4 u

0 0 (=)

BFS example-cont.

m BSF calculates the shortest distance of each
vertex to root s, assume each edge weight is 1

m Time complexity of BFS: © (n+m)

I A ! u

o

G
9

u

I S 1 u

u |y

BFS algorithm

void BFS (Graph* G, int s) {
Queue<int> Q;

bool *visited = new bool[G->n ()];

for(int 1i=0; 1<G->n(); ++1i) visited[i] = false;
Q->enqueue (s) ; // Initialize Q
visited[s]= true;

int v, w;

Node *cur;

while (Q->length() > 0) { // Process Q
Q->dequeue (V) ;

PreVisit (G, V) ; // Take action
for(cur = G->adjList[v]; cur != NULL; cur=cur-
>next) {
W = cur—->nodelD;
1f(false == visited[w]) {
visited[w] = true;

Q->enqueue (w) ;
}

}
}

delete []visited;

Depth-first search (DFS)

m |t starts at a root vertex

m Explore one branch of a vertex as far as possible,
before exploring another branch of the vertex

m If no branches can be explored, backtrack

DFS example in a tree

m DFS starts from vertex 1
m Similar to a pre-order traversal in a tree

2) (D (&
e QW

4 (5 10 11

Order in which the nodes are visited

DFS example in a graph, start from vertex s

o Vlgrti%es are visited in order: s->A->D->G->E->B-
>F->

m There may be multiple orders
m Another order is: s->B->E->G->F->C->D->A

31

DFS Algorithm

volid DFS (Graph* G, 1nt v) {

PreVisit (G,
visited[v]
Node *cur;

V) ;

// Take action
TLrue;

for (cur=G->adjList[v]; cur !=NULL;
cur=cur->next) {

W = cur->nodelD;

1f(false

DFS (G, w

J
J

visited[w])

) ;

Time complexity: ® (n+m)

32

5. Topological Sort, applications:

1. Consider all courses you will learn, some course
must be learned before another

O e.g., You must learn C before this course

O List all courses in order, such that no prerequisite
courses Is after each course in the order

O E.g., you cannot learn this course before C

2. Given a set of jobs to be done by a computer, and
some jobs must be finished before other jobs

O List all jobs in order, such that no prerequisite
jobs is after each job in the order

Topological Sort

m Problem: Given a DAG G=(V,E), output all vertices
in an order such that no vertex v; appears before
another vertex v; if there is an edge from v;to v; in G

CSE 374

o
oo e

hua 126 Cse a3
Csay
One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

® Why do we perform topological sorts only on DAGs?
OBecause a cycle means there is no correct answer
m Is there always a unique order?

ONo, there can be multiple orders; depends on the
graph

m Do some DAGs have exactly 1 order?
OYes, e.g., the DAG is a linked list

Algorithm for Topological Sort

m While there are vertices not yet output:

O Choose a vertex v with in-degree of 0, i.e., no

dependency

O Output v and remove it from the gra

O For eac

bh

N out-going neighbor u of v, c

the in-¢

egree of u by 1

ecrease

Example

CSE 374 @

i g e
s s

Node: 126 142 143 374 373 410 413 415 417 XYL
Removed?
In-degree: O 0 2 1 1 1 1 1 1

Output:

Example

CSE 374 @

i g e
s s

Node: 126 142 143 374 373 410 413 415 417 XYL

Removed? X

In-degree: 0 0 2 1 1T 1 1 1 1 3
1

Output:
126

Example

CSE 374 @

G o
s s

Node: 126 142 143 374 373 410 413 415 417 XYL
Removed? x x
In-degree: 0 0 2 1 1T 1 1 1 1 3
1
0

Output:
126
142

Example Output:

CSE 374 @ 126
142
Cse4) e

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X

In-degree: O 0 2
1 0 O
0

Example Output:

142

- 5 e :

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X

In-degree: 0 0 2 1T 1 1 1 1 1 3
1 0 O 2
0

Example Output:

142

i o e " :

373

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X

In-degree: 0 0 2 1 1 1 1 1 1 3
1 o o 0O O o o0 2
0

Example Output:

142

i o e " :

373

4@ @ 417

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X X

In-degree: 0 0 2 1 1 1 1 1 1 3
1 0 0 O O 0O 0 2
0

Example Output:

142

i it s :

373

am i cor
410

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X X X

In-degree: 0 0 2 1 1 1 1 1 1 3
1 o 0o 0 O o0 o0 2
0

Example Output:

142

ST :

373
410
conan
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x X X X X X X

1 1 1 1T 1 1

In-degree: 0 0 2 3
1 0 0 O O O o0 2
0 1

0

Example Output:

142

ST :

373

410

conan

XYZ
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X X X X X

1 1 1 1 1 1

In-degree: 0 0 2 3
1 o 0 o O o0 0 2
0 1

0

Example Output:

142

ST :

373

4@ @ 417

410

csuai

XYZ
415

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? X X X X X X X X X

X
In-degree: 0 0 2 1 1 1 1 1 1 3
1 0 0 O O 0 o0 2
0 1

0

Notice
m Need a vertex with in-degree 0O to start
OWe can do this because a DAG has no cycles

m Ties among multiple vertices with in-degrees of 0
can be broken arbitrarily

m There are multiple answers to a topological sort

gueue based Topological Sort

vold topSort (Graph* G) {
Queue<int> Q;
int inDegrees[G->n ()];
int v, w;
Node *cur;
for (v=0,; v<G->n(); v++) 1inDegrees[v] = 0;
for (v 0; v<G >n () ; v++) // Process edges

for (cur=G-> List[v]; cur!=NULL;
cCur=cur- >next ?9; out- neighbors of Vertex v

1nDegrees[cur->nodelID]+
for (v=0; v<G->n(); v++) // Initialize 0
if (inDegrees[v] == (0)// No in-neighbors
Q—->enqueue (V) ;
while (Q—->length() > 0) {
Q—->dequeue (V) ;
printout (v) ; // PreVisit for V

for (cur=G->adjlList|[v],; cur!=NULL;
cur=cur->next)

W = cur->nodelD;
inDegrees[w]—-; // One less in-neigb.
if (inDegrees[w] == 0) // Now free

Q—>enqueue (w) ;
P

Running time

O Initializing queue Q, array inDegrees takes ® (N+m)
(assuming adjacency list)

O Notice that each vertex enqueues only once, and explore
its out-going neighbors when it dequeues from queue Q

« Takes time ® (n+m)

O Total time: ® (n+m)

6. Applications of shortest paths

m The Internet is a collection of interconnected
computer networks

m Information is passed from a source host, through
routers, to its destination server

m e.g. a portion of Internet

® How to send the
iInformation along some
routers with shortest delay?

Application - google map navigation

m The driving path from Jiang’an campus to
Wangjiang campus

nE RERX INF A

7 "% g HTREL
& from Sichuan University Jiang'an Campus Students'D... < T HH ° X ‘
to Sichuan University Wangjiang Campus (South Gat...
Y - &= 37 min YULIN Wsichuan University
34 min (15.9 km) g < &= 1S.5n it £ & Wangjiang Campus...
V. 2|

via 103818

2 HUAXING LIANXIN STREET
Fastest route "5, RESIDENTIAL ‘ RESIDENTIAL
7 DISTRICT DISTRICT
FoS | % Ffi
A
. . - CUQIAO
Sichuan University Jiang'an Campus Students' ;NQTI&O RESIDENTIAL
Dormitory RICT - DISTRICT LIUJIANG
S Xian, Chengdu Shi fE 15 ey RESIDENTIAL
2 DISTRICT

;1
3rd Ring Rd 3rg
Sectj
Oon

> Take FMTAGEIRER and E5AI-EE—ER to 10318 & 34 min &
/KA S FEER 159 K
[G4201
8min (2.1 km)
GUIXIXIANG
> Continue on 103&7& to HEX e e
7 min (3.3 km) m
> Get on EE=IREATUERRES from Y ERBIATRS » = Chengdu
4min (2.6 km) Eﬁ 64201 EY’ EB ﬁi
> Drive along FA=IABEIUER, RATAELER, ARE oo o t

FRPUER, —IAESEI_ER and RlAbRE Sichuan University

Century Cit
Jiang'an Campus.. > Yise)

11 min (6.8 km) U e s o International...

£ HiCHNERE R
> Take Frtig and SASRES to BRI
5min (1.1 km) X e Al i3]

6. Shortest Paths Problems

m Problem 1: Given a weighted graph, one common
problem is to find the shortest path from a source
vertex s to a destination vertex t

m Problem 2: find shortest paths from a source
vertex s to all other vertices

m The problem 1 is not easier than problem 2

53

Shortest Path

m Find the shortest path from vertex 1 to vertex 13

m Path1-2 —-5—>9 —> 11 — 13 Is shortest, with
distance 14

m Other paths are longer, e.g,
Opath 1.2 —>4 -8 - 11 — 13, distance is 17

54

Basic idea of Dijkstra’s algorithm

Find shortest paths from a source vertex s to other vertices
It first estimates the shortest distance to each vertex

Assume that we have found the shortest paths from s to a
set S of vertices

It repeatedly selects the vertex u in VIS with the minimum
shortest-path estimate, adds u to S

After the adding of u, update the shortest distance
estimates of vertices still in V\S

Example of Dijkstra’s algorithm

m The value on each vertex is the shortest distance
estimate or shortest distance from s to the vertex

All-Pairs Shortest Paths

m Calculate the shortest paths for all pairs of
vertices

m Run Dijkstra’s algorithm n times, each time
starting from each vertex

57

/. Minimum Spanning Tree (MST)

m Given an undirected, connected graph G=(V, E),
and an edge weight function: w: E->R,

m the minimum spaning tree is a spanning tree
T=(V, E’) of G such that the weighted sum of
edges in T is minimized

O A spanning tree T=(V, E’) of G is a subgraph of G so

that the subgraph contains no cycles and spans
vertices in V

Applications of MST

m Direct applications in
O Computer networks
O telecommunication network
O transportation networks
O water supply networks
O electrical grids
m Invoked as a subroutine for other problems
O Approximating the travelling salesman problem
O Steiner tree problem

99

An application example of MST in
telecommunication networks

m A telecommunication company wants to lay cables to a new
neighbourhood and must bury cables along roads. G=(V, E), w
E->R

O Each vertex is V represents a building
O Each edge (u, v) in E represents the road connects buildings u and v
O w(u,v): the cost of burying cables to connect buildings u and v

= How to lay cables to connect the buildings so that the total
cost is minimized? BN TP it

60

Two optimal algorithms to the MST problem

Kruskal’s algorithm

O O(n+m*log n)

Om=|E|], n=1|V]

Prim’s algorithm

O O(m+ n*log n)

Both construct the MST in a greedy way

Introduce the Prim’s algorithm as follows, as it is
usually faster than Kruskal’s algorithm

61

Basic idea of Prim’s Algorithm
m The MST T grows from a single vertex

m Assume that T has already spanned some vertices in
set S, iteratively extend T by removing the nearest
vertex u in set V\S to S.

m After (n-1) times of growing, T spans all nodes in V

e "
(W
N Y ®

(e) () MST

:

2
3
4
5
6
/

Conclusions

. Applications of graphs
. Notations in graphs

. Graph representations in computers

. Graph traversals
. Topological sort —
. Shortest Path

. Minimum Spanning Tree

Study Four
common

problems
in graphs

Homework 4

See course webpage
Deadline: midnight before next lecture
Submit to: cs_scu@foxmail.com
File name format:
O CS311_Hw4_yourlID_yourLastName.doc (or .pdf)

mailto:cs_scu@foxmail.com

