

Chapter I.2 (Set, relations, and functions theory)

- 2.4 Summations and Recurrences
 - e.g., recurrence relation and function
- 2.5 Recursion
 - e.g., execution results for a given recursion program
- No proof in the exam.

Chapter I.3 (Algorithm Analysis)

- Concepts of $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$
- Asymptotic analysis
 - e.g., big-O analysis for a given algorithm or function

Chapter II.4 (Lists, Stacks, and Queues)

- 4.1 List: array-based list, linked list (singly linked list), and some basic operations on list
- 4.2 Stacks and 4.3 Queues
 - the usages of stacks and queues - *programming* (e.g., bracket matching)
 - the properties of stacks and queues

Chapter II.5 (Trees)

- 5.1 Definitions and Properties
 - binary tree, binary search tree, level, depth, height, internal node/leaf, full binary tree/complete binary tree
- 5.2 Tree traversals
 - Pre-order, In-order, Post-order, and Level-order
 - Find the ordering of nodes given a tree
- 5.4 Definition of Binary Search Tree (BST)
 - the relationship between the depth and the number of nodes in a BST
- 5.5 Heaps and Priority Queue, and 5.6 Huffman coding tree
 - Concepts, and examples (toy problems)
 - Algorithm to build a Huffman tree (greedy algorithm), Assigning and using Huffman codes
 - No programming

Chapter II.6

Chapter III.7 (Sorting)

- Three $\Theta(n^2)$ sorting algorithms
- *Programming*
 - Insertion sort, Bubble sort, Selection sort
 - Mergesort, Quick sort

Chapter III.8 (Sorting)

- Concepts about disks, I/O

Chapter III.9 (Searching, Hashing)

- 9.1 Concepts about unsorted and sorted arrays
- 9.4 Hashing
 - Hash functions, Collision issues

Chapter III.10

Chapter IV.11 (Graphs)

- Basic terminology
 - Directed/undirected graph, weighted/unweighted graph, path, length
- Two representation forms of a graph
 - Adjacency Matrix, e.g., Figure 11.3
 - Adjacency Lists, e.g., Figure 11.4
- 11.3 Graph Traversals
 - Depth-first search, Breadth-first search, Topological sort (e.g., write the topological sorting result of a graph)
- 11.4 Shortest-Paths problems, 11.5 MST
 - Dijkstra's algorithm, Prim's algorithm, Kruskal's algorithm
 - No programming, know how to describe the algorithms in words

Chapter IV.12

Chapter IV.13