Data Structures and

Algorithms

Set, relations, and functions theory
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Sets

A set is a collection of distinct objects.
Example (let A denote a set):

A = {apple,pear, grape}

A =1{1,2,3,4,5)

A=1{1,b,cd,e,f}

A ={(12),(3,4),(910);}

A=1{<123><345><678>)

A =a collection of anything that is meaningful.
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Members and Equality of Sets

The objects that make up a set are called
members or elements of the set.

Two sets are equal iff they have the same
members.

That is, a set is completely determined by its
members.

Order does not matter in a set.

Cardinality: a measure of the number of
elements in a set.
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Set notations

The notation of {...} describes a set. Each
member or element is separated by a
comma.
E.g., S = {apple,pear, grape}
S is a set
The member of S are: apple, pear, grape.

Set representations
Enumeration: S = {2,4,6, 8,10}

Description: S =
{x|x is an even integer number and 0 < x < 10}
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The membership symbol € and the
empty set @

The fact that x is a member of a set S can be
expressedas x € S

Reads: x isin S, or x is a member of S, or x
belongs to S.

An example, S ={1,2,3},1€S5,2€S5,3€S
The negation of € is written as & (is not in).

The empty set is a set without any element

Denoted by {} or @
Forany object x, x € @
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Subsets

A is a subset (S) of B, or B is a superset of 4
Iff every member of A is a member of B.

A e B iffforall x if x € a,then x In B
An example:
(-2, 0, 6) €{-3, -2, —1,0,1,3,6}
Negation: A is not a subset of B or B is not a

superset of A iff there is a member of A that
IS not a member of B

AZ B iffthereexistx,x € A, x ¢ B
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Proper subsets

A is a proper subset (c) of B, or B is a proper
superset of 4 iff A is a subset of B and 4 is
not equal to B.

AcBiffACBandA #8B

Examples:
{1,2,3} c{1,2,3,4,5}
Z,c/Zc(@QCR
IfS+@dthen@d cS
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Power sets

The set of all subsets of a set is called the
power set of the set

The power set of S is denoted by P(S).
Example:
P(0)={0}

P({1,2})={0,{1},{2},{1,2}}
What is P({1,2,3})?

How many elements does the power set of S
have? Assume S has n elements.
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€ and C are different

Examples:
1 € {1} is true
1 € {1} is false
1 € {1} is true

Which of the following statement is true?
S C P(S)
S eP(S)
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Mutual inclusion and set equality

Set A and B have the same members iff they
mutually include

ACBand BC A
Thatis, A=BiffAcCc Band BC A

Mutual inclusion is very useful for proving the
equality of sets

To prove an equality, we prove two subset
relationships.
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An example: equality of sets

Denote Z as the set of (all) integers
etA={xe’Z|x=2m form e Z}
etB={xeZ|x=2n-2forne ”Z}
To show A — B, note that

2m=2(m+1) -2 = 2n-2
To show that B — A, note that

2n-2=2(n-1)=2m
That is, A = B. (A, B both denote the set of all
even integers.)
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Universal sets

Depending on the context of discussion

Define a set of U such that all sets of interest are
subsets of U.

The set U is known as a universal set.

Examples:

When dealing with integers, U may be Z.

When dealing with plane geometry, U may be the
set of points in the plane.
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Venn diagram

Venn diagram is used to visualize
relationships of some sets.

Each subset (of U, the rectangle) is
represented by a circle inside the rectangle.

S O
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Set operations

Let A, B be subsets of some universal set U. The
following set operations create new sets from A and B.

Union:
AuB={xeU|xeAorxeB}

Intersection:
AnB={xeU|xeAandx e B}

Difference:
A-B=A\B={xeU|xeAandx ¢ B}

Complement
A=U-A={xeU|x¢gA
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Set union

An example
{1,2,3}u{1,2,4,5}={1, 2, 3, 4, 5}
The venn diagram

&
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Set intersection

An example
{1,2,3} n{1,2,4,5}={1, 2}
The venn diagram

€D
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Set difference

An example
{1, 2,3} - {1, 2, 4, 5} = {3}
The venn diagram

oD
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Set complement

= The venn diagram
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Basic set identities (equalities)

Commutative laws
AuB=BJUA
ANnB=BnA

Associative laws
(AuB)uC=Au (BuUC)
(AnB)nC=An(BnC)

Distributive laws
AuBnNnC)=(AuB)n(AuC)
AnNn(BuC)=(AnB)u(An C)
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Basic set identities (cont'd ...)

|dentity laws
JUA=AUII=A
ANnU=UnNA=A

Double complement law
(A'Y = A

ldempotent laws
AUA=A
ANnA=A

De Morgan's laws
(AUBY=A' "B’
(ANBY=A"UB’
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Basic set identities (cont'd ...)

Absorption laws
AUANn B)=A
An(AuB)=A

Complement law
Uy =g
' =U

Set difference law
A-B =AnPB

Universal bound law
AuU=U
AND=0
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Proof methods

There are many ways to prove set identities
Applying existing identities
Using mutual inclusion (MI)

Prove AnB)NnC=An (B nC)using Ml
First show: AnB)nCcAn (BN C)

Letx e (AnB)andx e C
(xe AandxeB)andx € C
xeAandx e (B C)
xe An(BnC)

Then showthat AN (BN C)c(AnB)nC
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More proot examples

Let B = {x | x is a multiple of 4}
A = {x | x iIs a multiple of 8}
Then we have A B
Proof: let x € A. We must show that x Is a

multiple of 4. We can write x = 8m for
some integer m. We have

X=8m =2"4m =4 k, where k = 2m,
so k is a integer.
Thus, x is a multiple of 4, and therefor x € B.
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More proot examples

Prove {x | x € Zand x > 0 and x? < 15}
={Xx|xeZandx>0and 2x <7}

Proof:
Let A={x|x e Zand x>0 and x2 < 15}
B={x|xeZandx>0and2x <7}
Letx e A.xcanonlybeO, 1, 2, 3
2x for 0, 1, 2, 3 are all less then 7.
Thus, A c B.
Likewise, we can also show that B — A
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Algebraic proot examples

Prove:
[AUBNCIN([AuBNC)Nn(BNC))=I

Proof:
[AUBNC)N([AAuBNC)]n(BNC))
=([AuBNC)IN[A " UBNC)]) N (BNC) (@ssociative)
=([(BNC)YUAIN[(BNC)uA] n(BNC)' (commutative)
=[(BNC)u (AN A)] N (BN C) istibutive)
=[(BNC)uId]n (BN C) (complement)
=(BNC)n (BN C) (denty)

= & (identity)
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Algebraic proot examples

Prove:
(AuB)-C=(A-C)u (B-0C)
Proof:
(AuB)—C=(AuB)n C’ @diference)
= C' N (A U B) (commutative)
=(C ' nA)u (C' n B) distributive)
=(ANC’)u (BN C’) (commutative)
= (A—=C)u (B - C) ifference)

(@ CS311, Hao Wang, SCU
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‘ Disproving an alleged Set property

Is the following true?
(A-B)u(B-C)=A-C

Solution: Draw a Venn diagram and construct

some sets to confirm the answer

Counterexample: A={1, 2,4, 5}, B ={2, 3,
5,6}, andC={4, 5,06, 7}

A-B={1,4,B-C={2,3,A-C={1,2)
(A-B)u (B-C)={1, 2, 3, 4)
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Pigeonhole principle

If more than k pigeons fly into k pigeonholes,
then at least one hole will have more than one
pigeon.

Pigeonhole principle: if more than k items are
placed into k bins, then at least one bin contains
more than one item.

Simple, and obvious!!

To apply it, may not be easy sometimes. Need
to be clever in identifying pigeons and
pigeonholes.
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Example

How many people mush be in a room to
guarantee that two people have last names
that begin with the same initial?

How many times must a single die be rolled
in order to guarantee getting the same value
twice?
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Another example

Prove that if four numbers are chosen from
the set {1, 2, 3, 4, 5, 6}, at least one pair must
add up to 7.

Proof: There are 3 pairs of numbers from the
setthatadd up to 7, i.e.,
(1, 6), (2, 5), (3, 4)

Apply pigeonhole principle: bins are the
pairs, and the numbers are the items.
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Summary

Sets are extremely important for Computer
Science.

A set is simply an unordered list of objects.

Set operations: union, intersection,
difference.

To prove set equalities
Applying existing identities
Using mutual inclusion

Pigeonhole principle
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Relations
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Ordered n-tuples

An ordered n-tuple is an ordered sequence of n
objects, denoted as

(X4, X5y +oty Xp)
1st coordinate (or component) is x;

n-th coordinate (or component) is X,

An ordered pair: An ordered 2-tuple
(X, y)

An ordered triple: An ordered 3-tuple
(X, Y, Z)
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Equality of tuples vs sets

Two tuples are equal iff they are equal
coodinate-wise

(X‘I’ X2’ “e ey Xn) = (y15 y2, ey yn) Iff
X1 =Y, X2 =Y, ...; Xy = Y

2, 1) = (1, 2), but {2, 1} = {1, 2)

1,2,1) = (2, 1), but {1, 2, 1} = {2, 1}
1,2-2,a)=(1, 0, a)
1,2,3)%(1,2,4)and {1, 2, 3} = {1, 2, 4}

AN N N N
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Cartesian products

Let Aq, Ay, ...A, be sets

The cartesian products of A, A,, ...A, IS
Ay XA, X .. XA,
={ (X4, Xp, ..., X,) | X € Ajand x, € A, and ...
and x, € A,)

Examples: A={x, y},B={1, 2, 3}, C ={a, b}
AxB={(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (v, 3)}
AxBxC ={(x, 1, a), (x, 1, b), ..., (y, 3, a), (y, 3, b)}
Ax(BxC) ={(x, (1, a)), (x, (1, b)), ..., (v, (3, a)),
(y, (3, b))}
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Relations

A relation is a set of ordered pairs

Let x Ry mean x is R-related to y

Let A be a set containing all possible x

Let B be a set containing all possible y
Relation R can be treated as a set of ordered pairs
R={(x,y) € AXxB| xRy}
Example: We have the relation “is-capital-of”
between cities and countries:

|s-capital-of = {(Beijing, CHN), (WashingtonDC, US), ...

(@ CS311, Hao Wang, SCU
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Relations are sets

R < AxB as a relation from A to B
R is a relation from A to B iff R < AxB
Furthermore, x Ry iff (X, y) € R.

If the relation R only involves two sets, we
say it is a binary relation.

We can also have an n-ary relation, which
iInvolves n sets.
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Various kinds of binary relations

One-to-one relation: each first component and
each second component appear only once in the
relation.

One-to-many relation: if some first component s;
appear more than once.

Many-to-one relation: if some second
component s, is paired with more than one first
component.

Many-to-many relation: if at least one s, is
paired with more than one second component
and at least one s, Is paired with more than one
first component.
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Visualizing the relations

FL L

One-to-one One-to-many
Many-to-one Many-to-many
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Binary relation on a set

Given a set A, a binary relation Ron Ais a
subset of AXA (R < AxA).

An example:
A ={1, 2}. Then AxA={(1,1), (1,2), (2,1), (2,2)}. Let
R on A be given by x Ry < x+y is odd.
then, (1,2) e R,and (2,1) e R
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Properties of Relations: Retlexive

Let R be a binary relation on a set A.
R is reflexive: iff for all x € A, (X, X) € R.

Reflexive means that every member is related to
itself.

Example: LetA={2, 4, a, b}
R={(2,2),(4,4), (a, a), (b, b)}
S={(2,b), (2 2),(4,4),(a, a), (2, a), (b, b)}
R, S are reflexive relations on A.

Another example: the relation < is reflexive on
the set Z..
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‘ Properties of Relations: Symmetric

A relation R on a set A is symmetric iff for all x, y
e A, if(X,y) e Rthen (y,x) e R.
Example: A= {1, 2, b}
R={(1,1), (b, b)}
S ={(1,2);
T={(2,b), (b,2),(1,1)}
R, T are symmetric relations on A.
S is not a symmetric relation on A.

The relation < is reflexive on the set Z, but not
symmetric. E.g., 3<4isin, butnot4 <3
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‘ Properties of Relations: Anti-symmetric

A relation R on a set A is anti-symmetric iff for all
X,y e Aif(Xx,y) e Rand (y, x) e Rthen x =Y.
Example: A= {1, 2, b}

R={(1,1), (b, b)}

S ={(1,2);

T={(2,b), (b,2),(1,1)}
R, S are anti-symmetric relations on A.
T i1s not an anti-symmetric relation on A.

The relation < is reflexive on the set Z, but not
symmetric. It is anti-symmetric.
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‘ Properties of Relations: Transitive

A relation R on a set A is transitive iff for all x, v,
ze A if(x,y) e Rand (y, z) € R, then (X, z)
R

Example: A= {1, 2, b}

R={(1,1), (b, b)}

S={(1,2),(2,b), (1, b)}

T={(2,b), (b, 2),(1,1)}
R, S are transitive relations on A.
T Is not a transitive relation on A.

The relation < is reflexive on the set Z, but not
symmetric. It is also anti-symmetric, and
transitive (why?).
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Transitive closure

Let R be a relation on A

The smallest transitive relation on A that
includes R is called the transitive closure of R.

Example: A= {1, 2, b}

R={(1, 1), (b, b)}

S={(1,2),(2,b), (1, b)}

T ={(2, b), (b, 2), (1, 1)}
The transitive closures of R and S are
themselves

The transitive closure of Tis T U {(2, 2), (b, b)}
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Equivalence relations

A relation on a set A is an equivalence relation if
itis

Reflexive.

Symmetric

Transitive.

Examples of equivalence relations
OnanysetS, xRy x=y
On integers > 0, x Ry <> x+y is even
On the set of lines in the plane, x Ry <> x is parallel to
y.
On{0,1}, xRy <> x=y?
On{1, 2,3}, R={(1,1), (2, 2), (3, 3), (1, 2), (2, 1)}.
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Congruence relations are equivalence
relations

We say x is congruent modulo mto y

That is, x C y iff m divides x-y, or x-y is an integral
multiple of m.

We also write x =y (mod m) iff x is congruentto y
modulo m.

Congruence modulo m is an equivalent relation
on the set Z.
Reflexive: m divides x-x =0
Symmetry: if m divides x-y, then m divides y-x
Transitive: if m divides x-y and y-z,
then m divides (x-y)+(y-z) = x-z
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An important feature

Let us look at the equivalence relation:
S = {x | x is a student in our class}
X Ry <> “x sits in the same row as y”

We group all students that are related to one
another. We can see this figure:

row-2
row-1

row-4

We have partitioned S into subsets in such a
way that everyone in the class belongs to one
and only one subset.
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Partition of a set

A partition of a set S is a collection of nonempty
disjoint subsets (S, S,, .., S,) of S whose union
equals S.

SiU S,U...US, =S

Ifi=jthen 5, §;= I (5, S;are disjoint)
Examples, let A ={1, 2, 3, 4}

{{1}, {2}, {3}, {4}} a partition of A

{{1, 2}, {3, 4}} a partition of A

{1, 2, 3}, {4}} a partition of A

{{}, {1, 2, 3}, {4}} not a partition of A

{1, 2}, {3, 4}, {1, 4}} not a partition of A
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Equivalent classes

Let R be an equivalence relation on a set A.
Letx € A

The equivalent class of x with respect to R is:
RIx]={y e Al (x,y) e R}
If R is understood, we write [X] instead of R[x].

Intuitively, [X] is the set of all elements of A to
which X is related.
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Theorems on equivalent relations and
partitions

Theorem 1: An equivalence relation R on a set A

determines a partition of A.
I.e., the distinctive equivalence classes of R form a
partition of A.
Theorem 2: a partition of a set A determines an
equivalence relation on A.

l.e., there is an equivalence relation R on A such
that the set of equivalence classes with respect to R
Is the partition.

(@ CS311, Hao Wang, SCU



An equivalent relations induces a
partition

Let A={0, 1, 2, 3, 4, 5}
Let R be the congruence modulo 3 relation
on A
The set of equivalence classes is:
{[0], [1], [2], [3], [4], [3]} =
{0, 3}, {1, 4}, {2, 3}, {3, O}, {4, 1}, {5, 2}} =
{0, 3}, {1, 4}, {2, 3}}

Clearly, {{0, 3}, {1, 4}, {2,5}} is a partition of A.
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An partition induces an equivalent
relation

etA={0,1, 2, 3, 4, 5}
_et a partition P = {{0, 5}, {1, 2, 3}, {4}}
etR =

{{0, 5} x {0, 5} U {1, 2, 3} x {1, 2, 3} U {4} x {4}}

=1(0,0), (0, 9),(5,0),(5,5),(1,1),(1,2), (1, 3), (2,
1).(2,2),(2,3), (3, 1), 3, 2), (3, 3), (4, 4);

It is easy to verify that R is an equivalent
relation.

(@ CS311, Hao Wang, SCU o4



Partial order

A binary relation R on a set S is a partial order
on S iff Ris

Reflexive
Anti-symmetric
Transitive

We usually use < to indicate a partial order.

If R is a partial order on S, then the ordered pair
(S, R) is called a partially ordered set (also
known as poset).

We denote an arbitrary partially ordered set by
(S, ).
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Examples

On a set of integers, X Ry <> x <y is a partial
order (< is a partial order).

for integers, a, b, c.
a < a (reflexive)
a<b,and b <aimplies a = b (anti-symmetric)
a<bandb <cimplies a < c (transitive)
Other partial order examples:
On the powersetPofaset, ARB«< AcCB
OnZ,, xRy xdividesy.
On{0,1}, xRy« x=y?

(@ CS311, Hao Wang, SCU
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‘ Some terminology of partially ordered
sets

_et (S, <) be a partially ordered set
fx<y,theneitherx=yorx=y.

fx <y, but x#y, we write X <y and say that

X iIs a predecessor of y, or y is a successor
of X.

A given y may have many predecessors, but
If X <y and there is no z with x < z <y, then x
IS an immediate predecessor of .
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Visualizing partial order: Hasse diagram

Let S be a finite set.

Each of the element of S is represented as a dot
(called a node, or vertex).

If X is an immediate predecessor of y, then the
node for y is placed above node x, and the two
nodes are connected by a straight-line segment.

The Hasse diagram of a partially ordered set
conveys all the information about the partial
order.

We can reconstruct the partial order just by
looking at the diagram
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An example Hasse diagram

— on the power set P({1, 2}):

Poset: (P({1, 2}), ©)
P({1,2}) =<4, {1}, {2}, {1, 2}}
c consists of the following ordered pairs
(D, D), {1}, {1}, ({2}, {2}), {1, 2}, {1, 2}),
(D, {1}), (D, {2}), (D, {1, 2}), ({1}, {1, 2}),
({2}, {1, 2})

{1, 2}

{1}. {2}

(@ CS311, Hao Wang, SCU
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Total orders

A partial order on a set is a total order
(also called linear order) iff any two
members of the set are related.

The relation < on the set of integers is ,
a total order. ®

The Hasse diagram for a total orderis o
on the right
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Least element and minimal element

Let (S, <) be a poset. If thereisay € S with
y<xforall x € S, theny is a least element of

the poset. If it exists, is unique.

An elementy € S is minimal if thereisnox € S
with x <.

In the Hasse diagram, a least element is below
all orders.

A minimal element has no element below it.

Likewise we can define greatest element and
maximal element
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Examples: Hasse diagram

Consider the poset: \

The maximal elements are a, b, f
The minimal elements are a, c.

A least element but A greatest element but
no greatest element no least element
b e

\/ N
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Summary

A binary relation on a set S is a subset of
SxS.

Binary relations can have properties of
reflexivity, symmetry, anti-symmetry, and
transitivity.

Equivalence relations. A equivalence relation
on a set S defines a partition of S.

Partial orders. A partial ordered set can be
represented graphically.
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Functions

@ CS311, Hao Wang, SCU
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High school functions

Functions are usually given by formulas

f(x) = sin(x)

f(x) = e*

f(x) = x3

f(x) = log x
A function is a computation rule that changes
one value to another value

Effectively, a function associates, or relates,
one value to another value.
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“oeneral” functions

We can think of a function as relating one
object to another (need not be numbers).

A relation f from A to B is a function from A
to B Iff

for every x € A, there exists a unique y € B such
that x fy, or equivalently (x,y) e f

Functions are also known as transformations,
maps, and mappings.
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Notational convention

Sometimes functions are given by stating the
rule of transformation, for example,

f(x)=x+1
This should be taken to mean
f={(x, f(x)) € AXB | x € A}
where A and B are some understood sets.
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Examples

Let A={1, 2, 3} and
B = {a, b}

R={(1, a), (2, a), (3, b)}is
a function from A to B

R={(1,a),(1,b), (2, a),
(3, b)} is not a function
from Ato B

/
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‘ Notations and concepts

Let A and B be sets, fis a function from A to
B. We denote the function by:

f:A—>B

A is the domain, and B is the codomain of
the function.

If (a, b) € f, then b is denoted by f(a); b is the

image of a under f, a is a preimage of b
under f.

The range of fis the set of images of .
The range of fis the set f(A).
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An example

Let the function f be

Domain is {1, 2, 3}
Codomain is {a, b, c}
Range is {a, c}

(@ CS311, Hao Wang, SCU
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Equality of tfunctions

Letf: A—>Band g: C —» D.

We denote function f = function g
iff setf =set g

Note that this force A=C, butnotB =D

Some require B = D as well.

(@ CS311, Hao Wang, SCU
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Properties of functions: onto

Letf: A—> B

The function f is an onto or surjective function iff the
range of f equals to the codomain of f.

Or for any y € B, there exists some x € A, such that
f(x) =y.

The function on the

right is onto. L

[—
f: Z — Z with f(x) = x? _

IS hot onto

(@ CS311, Hao Wang, SCU 72



One-to-one functions

A function f: A — B is one-to-one, or
injective if no member of B is the image
under f of two distinct elements of A.

etA={1,2, 3}

_etB={a, b,c,d}
etf={(1,b), (2, c), (3, a)}
The function f is one-to-one

f: Z — Z with f(x) = x? is not one-to-one
because f(2) = f(-2) = 4.
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‘ Bijections (one-to-one correspondences)

A function f: A — B is bijective if f is both
one-to-one and onto.

etA={1,2, 3}
_etB ={a, Db, c}
_etf={(1, b), (2, c), (3, a)}

The function f is one-to-one

f: Z — Z with f(x) = x2 is not bijective because
it is not one-to-one.
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Composition of functions

Letf: A— Band g: B— C. Then the

composition function , g ° f, is a function from
A to C defined by (g ° f)(a) =g(f(a)).

Note that the function f is applied first and
then g.

Let f: R —> R be defined by f(x) = x2.

Let g: R = R be defined by g(x) = [ x.
(9 ° )(2.3) = g(f(2.3)) =g((2.3)*) = 9(5.29)
=|5.29]=5.
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Inverse functions

Identity function: the function that maps each
element of a set A to itself, denoted by i,. We
have iy, A — A.

Let f: A — B. If there exists a function

g: B—> Asuchthatg°f=ijand f° g=i,, thengis
called the inverse function of f, denoted by f -
Theorem: Let f: A — B. fis a bijection iff f-
exists.

Example:
f: R—> R given by f(x) = 3x+4. f-1 = (x-4)/3
(fef-1)(x)=3(x-4)/3+4=x identity function
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Summary

We have introduced many concepts,
Function
Domain, codomain
Image, preimpage
Range
Onto (surjective)
One-to-one (injective)
Bijection (one-to-one correspondence)
Function composition
|dentity function
Inverse function
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Logarithm

A logarithm of base b for value y is the power to

which b is raised to get y
Definition: log, y = x,b > 0
The mimimum number of bits for encoding a value y

Logarithms have the following properties, for any positive values of m, n, and

r, and any positive integers a and b.

I log(nm) = logn + logm.

!\)

og(n/m) = logn — logm.

. log(n") =rlogn.

3
4. log, n = logy n/log; a.
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Summations

Summations are simply the sum of costs for a
function with a range of parameter values

notated as: , | .,
n Zi . nn+1)
i=1 B
] l l
Z 2? = 1= om ]
i=1
]
28 = 2"t 1.
r=()
— i _ o5 _N+2
i - mn
=1 = =
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Recursion

An algorithm is recursive if it calls itself to do
part of its work.

Example:
1, n=20
Compute n! factm) =1y factn—1), n>0
long fact (int n) { // Compute n! recursively

// To fit n! into a long variable, we require n <= 12
Assert((n >= 0) && (n <= 12), "Input out of range");

if (n <= 1) return 1l; // Base case: return base solution
return n * fact(n-1); // Recursive call for n > 1
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Recursion (cont'd ...)

= One more example: Towers of Hanoi puzzle

A

(A) Start (B) Middle (C) Goal

- How can you solve this problem? (think it)
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Recursion (cont'd ...)

A recursive function contains two parts
Base case, which can bs sovled easily,
e.g., fact(n)=1 if n=0.

Recursion case, including a single or multiple
calls for iteself with smaller problem sizes,

e.g., fact(n)=n*fact(n-1) if n>0
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Recursion (cont'd ...)

fact(n) = n * fact(n-1)
Recursive fcuntion may be diffcult to
understand, the key is as follows:

Do not think how function fact(n-1) execute

Just assume that fact(n-1) returen the correct
results
The ideas of abstract and divide and conquer is

very useful in not only algorithm design but also
solving many problems in our lives.
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Mathematical proot

Solving any problem has two distinct parts:

The investigation and the argument.

Three templates for mathematical proof

Direct proof
Logic deduction

Proof by contradiction
Proof by mathematical induction
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Proot by contradiction

Consider to show that P— Q, if we can prove
(not Q)—(not P), then P— Q holds

E.g., prove that there is no largest integer.
Proof:
Step 1: Assume that there is a largest integer, call it B.

Step 2: consider that C=B+1. C is an integer and C>B.
B then is not the largest integer. A contradiction happens.
Therefore, the assumption that there is a largest integer is
iIncorrect.
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Proot by induction

Prove S(n)=1+2+ ...+n = n(n+1)/2, for n 21
Proof:
Check the base case. S(1) =1 =1(1+1)/2
Assume the equation holds for n-1, i.e.,
S(n-1)=1+2+...+(n-1)=(n-1)(n-1+1)/2=(n-1)n/2
Consider the case for n.
S(n) = 1+2+...+(n-1)+n
= S(n-1)+n
= (n-1)n/2 + n, by the assumption
=n(n+1)2
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Estimation Techniques

Known as “back of the envelope” or
“back of the napkin” calculation

1. Determine the major parameters that effect the
problem.

2. Derive an equation that relates the parameters
to the problem.

3. Select values for the parameters, and apply
the equation to yield and estimated solution.

87
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Estimation Example

How many library bookcases does it
take to store books totaling one
million pages?

Estimate:

Pages/inch
Feet/shelf
Shelves/bookcase
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Overall summary

We talk about mathematical notation,
background, and technigues that

used throughout the book

provided primarily for review and reference.

You might return to the relevant sections
when you encounter unfamiliar notaton or
mathematical techniques in later course.
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Exercises

Exercise 1
11.6: 1.3, 1.12, 1.14

Exercise 2
12.9: 2.3, 2.5, 2.11, 2.17, 2.30, 2.33
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