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Data Structures and 
Algorithms

Set, relations, and functions theory
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Lecture outline

§ Set 
§ Relations
§ Functions
§ Logarithm, summations, recursion, proof, 

estimation
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Sets

§ A set is a collection of distinct objects.
§ Example (let 𝐴 denote a set):

q 𝐴 = 𝑎𝑝𝑝𝑙𝑒, 𝑝𝑒𝑎𝑟, 𝑔𝑟𝑎𝑝𝑒
q 𝐴 = {1,2,3,4,5}
q 𝐴 = {1, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}
q 𝐴 = {(1,2), (3,4), (9,10)}
q 𝐴 = {< 1,2,3 >,< 3,4,5 >,< 6,7,8 >}
q 𝐴 =a collection of anything that is meaningful.
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Members and Equality of Sets

§ The objects that make up a set are called 
members or elements of the set.

§ Two sets are equal iff they have the same 
members.
q That is, a set is completely determined by its 

members.
q Order does not matter in a set.

§ Cardinality: a measure of the number of 
elements in a set.
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Set notations

§ The notation of {… } describes a set. Each 
member or element is separated by a 
comma.
q E.g., 𝑆 = {𝑎𝑝𝑝𝑙𝑒, 𝑝𝑒𝑎𝑟, 𝑔𝑟𝑎𝑝𝑒}

� 𝑆 is a set
� The member of 𝑆 are: apple, pear, grape.

§ Set representations
q Enumeration: 𝑆 = {2, 4, 6, 8, 10}
q Description: 𝑆 =
{𝑥|𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 10}
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The membership symbol ∈ and the 
empty set ∅

§ The fact that x is a member of a set S can be 
expressed as 𝑥 ∈ 𝑆
q Reads: 𝑥 is in 𝑆, or 𝑥 is a member of 𝑆, or 𝑥

belongs to 𝑆.
§ An example, 𝑆 = {1,2,3}, 1 ∈ 𝑆, 2 ∈ 𝑆, 3 ∈ 𝑆
§ The negation of ∈ is written as ∉ (is not in).
§ The empty set is a set without any element

q Denoted by {} or ∅
q For any object 𝑥, 𝑥 ∉ ∅
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Subsets

§ 𝐴 is a subset (⊆) of 𝐵, or 𝐵 is a superset of 𝐴
iff every member of 𝐴 is a member of 𝐵.
q 𝐴 ∈ 𝐵 iff forall 𝑥 if 𝑥 ∈ 𝑎, then 𝑥 in 𝐵

§ An example:
q (−2, 0, 6) ⊆ {−3, −2, −1, 0, 1, 3, 6}

§ Negation: 𝐴 is not a subset of 𝐵 or 𝐵 is not a 
superset of 𝐴 iff there is a member of 𝐴 that 
is not a member of 𝐵
q 𝐴 ⊈ 𝐵 iff there exist 𝑥, 𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵
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Proper subsets

§ 𝐴 is a proper subset (⊂) of 𝐵, or 𝐵 is a proper 
superset of 𝐴 iff 𝐴 is a subset of 𝐵 and 𝐴 is 
not equal to 𝐵.
q 𝐴 ⊂ 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵

§ Examples:
q {1, 2, 3} ⊂ {1, 2, 3, 4, 5}
q 𝑍! ⊂ 𝑍 ⊂ 𝑄 ⊂ 𝑅
q If 𝑆 ≠ ∅ then ∅ ⊂ 𝑆
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Power sets

§ The set of all subsets of a set is called the 
power set of the set

§ The power set of S is denoted by P(S).
§ Example:

q P(∅)={∅}
q P({1,2})={∅,{1},{2},{1,2}}
q What is P({1,2,3})?

§ How many elements does the power set of S 
have? Assume S has n elements.
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∈ and ⊆ are different

§ Examples:
q 1 ∈ 1 is true
q 1 ∈ {1} is false
q 1 ∈ {1} is true

§ Which of the following statement is true?
q 𝑆 ⊆ 𝑃 𝑆
q 𝑆 ∈ 𝑃(𝑆)
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Mutual inclusion and set equality

§ Set A and B have the same members iff they 
mutually include
q 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴

§ That is, 𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴
§ Mutual inclusion is very useful for proving the 

equality of sets
§ To prove an equality, we prove two subset 

relationships.
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An example: equality of sets

§ Denote Z as the set of (all) integers
§ Let A = {x Î Z | x = 2m  for m Î Z }
§ Let B = {x Î Z | x = 2n-2 for n Î Z }
§ To show A Í B, note that 

2m=2(m+1) -2 = 2n-2
§ To show that B Í A, note that 

2n-2=2(n-1)=2m
§ That is, A = B. (A, B both denote the set of all 

even integers.)
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Universal sets

§ Depending on the context of discussion
q Define a set of U such that all sets of interest are 

subsets of U.
q The set U is known as a universal set.

§ Examples:
q When dealing with integers, U may be Z.
q When dealing with plane geometry, U may be the 

set of points in the plane.
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Venn diagram

§ Venn diagram is used to visualize 
relationships of some sets.

§ Each subset (of U, the rectangle) is 
represented by a circle inside the rectangle.
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Set operations

§ Let A, B be subsets of some universal set U. The 
following set operations create new sets from A and B.

§ Union:
q A È B = {x Î U | x Î A or x Î B}

§ Intersection: 
q A Ç B = {x Î U | x Î A and x Î B} 

§ Difference:
q A - B = A \ B= {x Î U | x Î A and x Ï B} 

§ Complement
q A¢ = U - A = {x Î U | x Ï A}
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Set union

§ An example
{1, 2, 3} È {1, 2, 4, 5} = {1, 2, 3, 4, 5}
The venn diagram
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Set intersection

§ An example
{1, 2, 3} Ç {1, 2, 4, 5} = {1, 2}
The venn diagram

17

1
23 4
5



@ CS311, Hao Wang, SCU

Set difference

§ An example
{1, 2, 3} - {1, 2, 4, 5} = {3}
The venn diagram
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Set complement

§ The venn diagram
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Basic set identities (equalities)

§ Commutative laws
A È B = B È A
A Ç B = B Ç A 

§ Associative laws
(A È B) È C = A È (B È C)
(A Ç B) Ç C = A Ç (B Ç C) 

§ Distributive laws
A È (B Ç C) = (A È B) Ç (A È C)
A Ç (B È C) = (A Ç B) È (A Ç C)
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Basic set identities (cont'd …)

§ Identity laws
Æ È A = A È Æ = A
A Ç U = U Ç A = A

§ Double complement law
(A’)’ = A

§ Idempotent laws
A È A = A 
A Ç A = A

§ De Morgan's laws
(A È B)’ = A’ Ç B’
(A Ç B)’ = A’ È B’
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Basic set identities (cont'd …)

§ Absorption laws
q A È (A Ç B) = A
q A Ç (A È B) = A

§ Complement law
q (U)’ = Æ
q Æ’ = U

§ Set difference law
q A – B  = A Ç B’ 

§ Universal bound law
q A È U = U
q A Ç Æ = Æ
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Proof methods

§ There are many ways to prove set identities
q Applying existing identities
q Using mutual inclusion (MI)

§ Prove (A Ç B) Ç C = A Ç (B Ç C) using MI
q First show: (A Ç B) Ç C Í A Ç (B Ç C) 
q Let x Î (A Ç B) and x Î C

� (x Î A and x Î B) and x Î C
� x Î A and x Î (B Ç C) 
� x Î A Ç (B Ç C) 

q Then show that A Ç (B Ç C) Í (A Ç B) Ç C 
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More proof examples

§ Let B = {x | x is a multiple of 4}
A = {x | x is a multiple of 8}
Then we have A Í B

§ Proof: let x Î A. We must show that x is a 
multiple of 4. We can write x = 8m for 
some integer m. We have
q x = 8m = 2*4m = 4 k, where k = 2m, 
q so k is a integer. 
q Thus, x is a multiple of 4, and therefor x Î B.
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More proof examples

§ Prove {x | x Î Z and x ³ 0 and x2 < 15}
= {x | x Î Z and x ³ 0 and 2x < 7}

§ Proof:
q Let A = {x | x Î Z and x ³ 0 and x2 < 15}

B = {x | x Î Z and x ³ 0 and 2x < 7}
q Let x Î A. x can only be 0, 1, 2, 3

2x for 0, 1, 2, 3 are all less then 7. 
Thus, A Í B.

q Likewise, we can also show that B Í A
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Algebraic proof examples

Prove:
[A È (B Ç C)] Ç ([A’ È (B Ç C)] Ç (B Ç C)’) = Æ

Proof:
[A È (B Ç C)] Ç ([A’ È (B Ç C)] Ç (B Ç C)’) 
= ([A È (B Ç C)] Ç [A’ È (B Ç C)]) Ç (BÇC)’ (associative)

= ([(B Ç C)È A] Ç [(B Ç C) È A’]) Ç (BÇC)’ (commutative) 

= [(B Ç C)È (A Ç A’)] Ç (B Ç C)’ (distributive)

= [(B Ç C)È Æ] Ç (B Ç C)’ (complement)

= (B Ç C) Ç (B Ç C)’ (Identity)

= Æ (identity)
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Algebraic proof examples

§ Prove:
(A È B) – C = (A – C) È (B – C)

§ Proof:
(A È B) – C = (A È B) Ç C’ (difference)

= C’ Ç (A È B) (commutative)

= (C’ Ç A) È (C’ Ç B) (distributive)

= (A Ç C’) È (B Ç C’) (commutative) 

= (A – C) È (B – C) (difference)
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Disproving an alleged Set property

§ Is the following true?
(A – B) È (B – C) = A – C

§ Solution: Draw a Venn diagram and construct 
some sets to confirm the answer

§ Counterexample: A = {1, 2, 4, 5}, B = {2, 3, 
5, 6}, and C = {4, 5, 6, 7}
A – B = {1, 4}, B – C = {2, 3}, A – C = {1, 2} 
(A – B) È (B – C) = {1, 2, 3, 4}
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Pigeonhole principle

§ If more than k pigeons fly into k pigeonholes, 
then at least one hole will have more than one 
pigeon.

§ Pigeonhole principle: if more than k items are 
placed into k bins, then at least one bin contains 
more than one item.

§ Simple, and obvious!!
§ To apply it, may not be easy sometimes. Need 

to be clever in identifying pigeons and 
pigeonholes.
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Example

§ How many people mush be in a room to 
guarantee that two people have last names 
that begin with the same initial?

§ How many times must a single die be rolled 
in order to guarantee getting the same value 
twice?
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Another example

§ Prove that if four numbers are chosen from 
the set {1, 2, 3, 4, 5, 6}, at least one pair must 
add up to 7. 

§ Proof: There are 3 pairs of numbers from the 
set that add up to 7, i.e.,

(1, 6), (2, 5), (3, 4) 
Apply pigeonhole principle: bins are the 

pairs, and the numbers are the items.
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Summary

§ Sets are extremely important for Computer 
Science.

§ A set is simply an unordered list of objects.
§ Set operations: union, intersection, 

difference.
§ To prove set equalities

q Applying existing identities
q Using mutual inclusion

§ Pigeonhole principle
32



@ CS311, Hao Wang, SCU

Relations
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Ordered n-tuples

§ An ordered n-tuple is an ordered sequence of n 
objects, denoted as
(x1, x2, …, xn)
q 1st coordinate (or component) is x1
q ...
q n-th coordinate (or component) is xn

§ An ordered pair: An ordered 2-tuple
q (x, y)

§ An ordered triple: An ordered 3-tuple
q (x, y, z)

34



@ CS311, Hao Wang, SCU

Equality of tuples vs sets

§ Two tuples are equal iff they are equal 
coodinate-wise
q (x1, x2, …, xn) = (y1, y2, …, yn) iff

x1 = y1, x2 = y2, …, xn = yn

§ (2, 1) ¹ (1, 2), but {2, 1} = {1, 2}
§ (1, 2, 1) ¹ (2, 1), but {1, 2, 1} = {2, 1}
§ (1, 2-2, a) = (1, 0, a)
§ (1, 2, 3) ¹ (1, 2, 4) and {1, 2, 3} ¹ {1, 2, 4} 
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Cartesian products

§ Let A1, A2, …An be sets
§ The cartesian products of A1, A2, …An is

q A1 x A2 x …x An 
= { (x1, x2, …, xn) | x1 Î A1 and x2 Î A2 and …   

and xn Î An)
§ Examples: A = {x, y}, B = {1, 2, 3}, C = {a, b}
§ AxB={(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}
§ AxBxC = {(x, 1, a), (x, 1, b), …, (y, 3, a), (y, 3, b)}
§ Ax(BxC) = {(x, (1, a)), (x, (1, b)), …, (y, (3, a)), 

(y, (3, b))}
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Relations

§ A relation is a set of ordered pairs
q Let x R y mean x is R-related to y
q Let A be a set containing all possible x
q Let B be a set containing all possible y
Relation R can be treated as a set of ordered pairs
R = {(x, y) Î AxB | x R y}

§ Example: We have the relation “is-capital-of” 
between cities and countries:

Is-capital-of = {(Beijing, CHN), (WashingtonDC, US), …}
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Relations are sets

§ R Í AxB as a relation from A to B
§ R is a relation from A to B iff R Í AxB

q Furthermore, x R y iff (x, y) Î R. 
§ If the relation R only involves two sets, we 

say it is a binary relation. 
§ We can also have an n-ary relation, which 

involves n sets. 
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Various kinds of binary relations
§ One-to-one relation: each first component and 

each second component appear only once in the 
relation. 

§ One-to-many relation: if some first component s1
appear more than once.

§ Many-to-one relation: if some second 
component s2 is paired with more than one first 
component. 

§ Many-to-many relation: if at least one s1 is 
paired with more than one second component 
and at least one s2 is paired with more than one 
first component.
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Visualizing the relations

One-to-one One-to-many

Many-to-one Many-to-many
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Binary relation on a set

§ Given a set A, a binary relation R on A is a 
subset of AxA (R Í AxA).

§ An example:
q A = {1, 2}. Then AxA={(1,1), (1,2), (2,1), (2,2)}. Let 

R on A be given by x R y « x+y is odd. 
q then, (1, 2) Î R, and (2, 1) Î R
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Properties of Relations: Reflexive

§ Let R be a binary relation on a set A. 
q R is reflexive: iff for all x Î A, (x, x) Î R.

§ Reflexive means that every member is related to 
itself. 

§ Example:  Let A = {2, 4, a, b}
q R = {(2, 2), (4, 4), (a, a), (b, b)}
q S = {(2, b), (2, 2), (4, 4), (a, a), (2, a), (b, b)}

§ R, S are reflexive relations on A. 
§ Another example: the relation £ is reflexive on 

the set Z+. 

42



@ CS311, Hao Wang, SCU

Properties of Relations: Symmetric

§ A relation R on a set A is symmetric iff for all x, y 
Î A, if (x, y) Î R then (y, x) Î R .

§ Example: A = {1, 2, b}
q R = {(1, 1), (b, b)}
q S = {(1, 2)}
q T = {(2, b), (b, 2), (1, 1)}

§ R, T are symmetric relations on A.
§ S is not a symmetric relation on A.
§ The relation £ is reflexive on the set Z+, but not 

symmetric. E.g., 3 £ 4 is in, but not 4 £ 3
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Properties of Relations: Anti-symmetric

§ A relation R on a set A is anti-symmetric iff for all 
x, y Î A. if (x, y) Î R and (y, x) Î R then x = y.

§ Example: A = {1, 2, b}
q R = {(1, 1), (b, b)}
q S = {(1, 2)}
q T = {(2, b), (b, 2), (1, 1)}

§ R, S are anti-symmetric relations on A.
§ T is not an anti-symmetric relation on A.
§ The relation £ is reflexive on the set Z+, but not 

symmetric. It is anti-symmetric.
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Properties of Relations: Transitive
§ A relation R on a set A is transitive iff for all x, y, 

z Î A, if (x, y) Î R and (y, z) Î R, then (x, z) Î
R.

§ Example: A = {1, 2, b}
q R = {(1, 1), (b, b)}
q S = {(1, 2), (2, b), (1, b)}
q T = {(2, b), (b, 2), (1, 1)}

§ R, S are transitive relations on A.
§ T is not a transitive relation on A.
§ The relation £ is reflexive on the set Z+, but not 

symmetric. It is also anti-symmetric, and 
transitive (why?).
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Transitive closure

§ Let R be a relation on A
§ The smallest transitive relation on A that 

includes R is called the transitive closure of R.
§ Example: A = {1, 2, b}

q R = {(1, 1), (b, b)}
q S = {(1, 2), (2, b), (1, b)}
q T = {(2, b), (b, 2), (1, 1)}

§ The transitive closures of R and S are 
themselves

§ The transitive closure of T is T È {(2, 2), (b, b)}
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Equivalence relations
§ A relation on a set A is an equivalence relation if 

it is 
q Reflexive.
q Symmetric
q Transitive.

§ Examples of equivalence relations
q On any set S, x R y « x = y
q On integers ³ 0, x R y « x+y is even
q On the set of lines in the plane, x R y « x is parallel to 

y.
q On {0, 1}, x R y « x = y2

q On {1, 2, 3}, R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}.
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Congruence relations are equivalence 
relations

§ We say x is congruent modulo m to y 
q That is, x C y iff m divides x-y, or x-y is an integral 

multiple of m. 
q We also write x º y (mod m) iff x is congruent to y 

modulo m. 
§ Congruence modulo m is an equivalent relation 

on the set Z.
q Reflexive: m divides x-x = 0
q Symmetry: if m divides x-y, then m divides y-x
q Transitive: if m divides x-y and y-z, 

then m divides (x-y)+(y-z) = x-z
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An important feature
§ Let us look at the equivalence relation:

q S = {x | x is a student in our class}
q x R y « “x sits in the same row as y”

§ We group all students that are related to one 
another. We can see this figure:

§ We have partitioned S into subsets in such a 
way that everyone in the class belongs to one 
and only one subset. 

row-1
row-2

row-5row-3

row-4
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Partition of a set
§ A partition of a set S is a collection of nonempty 

disjoint subsets (S1, S2, .., Sn) of S whose union 
equals S.
q S1 È S2 È … È Sn = S
q If i ¹ j then Si Ç Sj = Æ (Si Ç Sj are disjoint) 

§ Examples, let A = {1, 2, 3, 4}
q {{1}, {2}, {3}, {4}}   a partition of A
q {{1, 2}, {3, 4}}   a partition of A
q {{1, 2, 3}, {4}}   a partition of A
q {{}, {1, 2, 3}, {4}}   not a partition of A
q {{1, 2}, {3, 4}, {1, 4}}   not a partition of A
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Equivalent classes

§ Let R be an equivalence relation on a set A.
q Let x Î A

§ The equivalent class of x with respect to R is: 
q R[x] = {y Î A | (x, y) Î R}
q If R is understood, we write [x] instead of R[x].

§ Intuitively, [x] is the set of all elements of A to 
which x is related. 
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Theorems on equivalent relations and 
partitions

Theorem 1: An equivalence relation R on a set A 
determines a partition of A. 

q i.e., the distinctive equivalence classes of R form a 
partition of A.

Theorem 2:  a partition of a set A determines an 
equivalence relation on A. 

q i.e., there is an equivalence relation R on A such 
that the set of equivalence classes with respect to R 
is the partition. 
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An equivalent relations induces a 
partition

§ Let A = {0, 1, 2, 3, 4, 5}
§ Let R be the congruence modulo 3 relation 

on A
§ The set of equivalence classes is:

q {[0], [1], [2], [3], [4], [5]} =
{{0, 3}, {1, 4}, {2, 5}, {3, 0}, {4, 1}, {5, 2}} =
{{0, 3}, {1, 4}, {2, 5}} 

§ Clearly, {{0, 3}, {1, 4}, {2,5}} is a partition of A. 
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An partition induces an equivalent 
relation

§ Let A = {0, 1, 2, 3, 4, 5}
§ Let a partition P = {{0, 5}, {1, 2, 3}, {4}}
§ Let R =

{{0, 5} x {0, 5} È {1, 2, 3} x {1, 2, 3} È {4} x {4}}
= {(0, 0), (0, 5), (5, 0), (5, 5), (1, 1), (1, 2), (1, 3), (2, 

1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4)}
§ It is easy to verify that R is an equivalent 

relation. 
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Partial order

§ A binary relation R on a set S is a partial order 
on S iff R is
q Reflexive
q Anti-symmetric
q Transitive

§ We usually use £ to indicate a partial order.
§ If R is a partial order on S, then the ordered pair 

(S, R) is called a partially ordered set (also 
known as poset).

§ We denote an arbitrary partially ordered set by 
(S, £). 

55



@ CS311, Hao Wang, SCU

Examples

§ On a set of integers, x R y « x £ y is a partial 
order (£ is a partial order).

§ for integers, a, b, c.
q a £ a (reflexive)
q a £ b, and b £ a implies a = b (anti-symmetric)
q a £ b and b £ c implies a £ c (transitive)

§ Other partial order examples:
q On the power set P of a set, A R B « A Í B
q On Z+, x R y « x divides y.
q On {0, 1}, x R y « x = y2

56



@ CS311, Hao Wang, SCU

Some terminology of partially ordered 
sets

§ Let (S, £) be a partially ordered set
§ If x £ y, then either x = y or x ¹ y. 
§ If x £ y, but x ¹ y, we write x < y and say that 

x is a predecessor of y, or y is a successor
of x. 

§ A given y may have many predecessors, but 
if x < y and there is no z with x < z <y, then x 
is an immediate predecessor of y. 
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Visualizing partial order: Hasse diagram

§ Let S be a finite set. 
§ Each of the element of S is represented as a dot 

(called a node, or vertex). 
§ If x is an immediate predecessor of y, then the 

node for y is placed above node x, and the two 
nodes are connected by a straight-line segment. 

§ The Hasse diagram of a partially ordered set 
conveys all the information about the partial 
order. 

§ We can reconstruct the partial order just by 
looking at the diagram
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An example Hasse diagram

§ Í on the power set P({1, 2}): 
q Poset: (P({1, 2}), Í)

§ P({1, 2}) = {Æ, {1}, {2}, {1, 2}}
§ Í consists of the following ordered pairs

(Æ, Æ), ({1}, {1}), ({2}, {2}), ({1, 2}, {1, 2}), 
(Æ, {1}), (Æ, {2}), (Æ, {1, 2}), ({1}, {1, 2}), 
({2}, {1, 2})

{1, 2}

{1}.                 {2}

Æ
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Total orders

§ A partial order on a set is a total order
(also called linear order) iff any two 
members of the set are related. 

§ The relation £ on the set of integers is 
a total order. 

§ The Hasse diagram for a total order is 
on the right
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Least element and minimal element

§ Let (S, £) be a poset. If there is a y Î S with       
y £ x for all x Î S, then y is a least element of 
the poset. If it exists, is unique.

§ An element y Î S is minimal if there is no x Î S 
with x < y. 

§ In the Hasse diagram, a least element is below 
all orders.

§ A minimal element has no element below it. 
§ Likewise we can define greatest element and 

maximal element
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Examples: Hasse diagram

§ Consider the poset:

§ The maximal elements are a, b, f
§ The minimal elements are a, c. 

A least element but                        A greatest element but 
no greatest element                            no least element

a

f

b

c

e

b

c

e f

b e
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Summary

§ A binary relation on a set S is a subset of 
SxS.

§ Binary relations can have properties of 
reflexivity, symmetry, anti-symmetry, and 
transitivity. 

§ Equivalence relations. A equivalence relation 
on a set S defines a partition of S. 

§ Partial orders. A partial ordered set can be 
represented graphically. 

63



@ CS311, Hao Wang, SCU

Functions
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High school functions

§ Functions are usually given by formulas
q f(x) = sin(x) 
q f(x) = ex
q f(x) = x3
q f(x) = log x

§ A function is a computation rule that changes 
one value to another value

§ Effectively, a function associates, or relates, 
one value to another value. 
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“general” functions

§ We can think of a function as relating one 
object to another (need not be numbers).

§ A relation f from A to B is a function from A 
to B iff
q for every x Î A, there exists a unique y Î B such 

that x f y, or equivalently (x, y) Î f
§ Functions are also known as transformations, 

maps, and mappings. 
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Notational convention

§ Sometimes functions are given by stating the 
rule of transformation, for example, 
q f(x) = x + 1

§ This should be taken to mean
f = {(x, f(x)) Î AxB | x Î A}
where A and B are some understood sets. 
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Examples

§ Let A = {1, 2, 3} and 
B = {a, b}

§ R = {(1, a), (2, a), (3, b)} is 
a function from A to B

§ R = {(1, a), (1, b), (2, a), 
(3, b)} is not a function
from A to B

1

2

3

a

b

1

2

3

a

b
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Notations and concepts

§ Let A and B be sets, f is a function from A to 
B. We denote the function by:

f: A ® B
§ A is the domain, and B is the codomain of 

the function. 
§ If (a, b) Î f, then b is denoted by f(a); b is the 

image of a under f, a is a preimage of b
under f. 

§ The range of f is the set of images of f.
q The range of f is the set f(A).
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An example

§ Let the function f be

§ Domain is {1, 2, 3}
§ Codomain is {a, b, c}
§ Range is {a, c}

1

2

3

a

b
c
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Equality of functions

§ Let f: A ® B and g: C ® D.
§ We denote    function f = function g

q iff set f = set g
§ Note that this force A = C, but not B = D

q Some require B = D as well. 
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Properties of functions: onto

§ Let f: A ® B 
q The function f is an onto or surjective function iff the 

range of f equals to the codomain of f. 
q Or for any y Î B, there exists some x Î A, such that 

f(x) = y.
§ The function on the 

right is onto.
§ f: Z ® Z with f(x) = x2

is not onto

1

2

3

a

b
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One-to-one functions

§ A function f: A ® B is one-to-one, or 
injective if no member of B is the image 
under f of two distinct elements of A.

§ Let A = {1, 2, 3}
§ Let B = {a, b, c, d}
§ Let f = {(1, b), (2, c), (3, a)}
§ The function f is one-to-one
§ f: Z ® Z with f(x) = x2 is not one-to-one 

because f(2) = f(-2) = 4. 

1

2

3

a

b
c
d
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Bijections (one-to-one correspondences)

§ A function f: A ® B is bijective if f is both 
one-to-one and onto. 

§ Let A = {1, 2, 3}
§ Let B = {a, b, c}
§ Let f = {(1, b), (2, c), (3, a)}
§ The function f is one-to-one
§ f: Z ® Z with f(x) = x2 is not bijective because 

it is not one-to-one.

1

2

3

a

b
c
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Composition of functions

§ Let f: A ® B and g: B ® C. Then the 
composition function , g ° f, is a function from 
A to C defined by (g ° f)(a) =g(f(a)).

§ Note that the function f is applied first and 
then g. 

§ Let f: R ® R be defined by f(x) = x2. 
§ Let g: R ® R be defined by g(x) = ëxû.

(g ° f)(2.3) = g(f(2.3)) =g((2.3)2) = g(5.29)        
= ë5.29û = 5. 
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Inverse functions
§ Identity function: the function that maps each 

element of a set A to itself, denoted by iA. We 
have iA: A ® A. 

§ Let f: A ® B. If there exists a function 
g: B ® A such that g ° f=ia and f ° g=ib, then g is 
called the inverse function of f, denoted by f -1

§ Theorem: Let f: A ® B. f is a bijection iff f -1
exists.  

§ Example: 
q f: R® R given by f(x) = 3x+4. f -1 = (x - 4)/3
q (f ° f -1)(x) = 3(x-4)/3 + 4 = x     identity function
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Summary

§ We have introduced many concepts, 
q Function
q Domain, codomain
q Image, preimpage
q Range
q Onto (surjective)
q One-to-one (injective)
q Bijection (one-to-one correspondence)
q Function composition
q Identity function
q Inverse function
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Logarithm
§ A logarithm of base b for value y is the power to 

which b is raised to get y
q Definition: log! 𝑦 = 𝑥, 𝑏 > 0
q The mimimum number of bits for encoding a value y
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Summations
§ Summations are simply the sum of costs for a 

function with a range of parameter values
q notated as:
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Recursion

§ An algorithm is recursive if it calls itself to do 
part of its work.

§ Example: 
q Compute n!

80
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Recursion (cont'd ...)

§ One more example: Towers of Hanoi puzzle

q How can you solve this problem? (think it)
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Recursion (cont'd ...)

§ A recursive function contains two parts
q Base case, which can bs sovled easily, 
   e.g., fact(n)=1 if n=0.

q Recursion case, including a single or multiple 
calls for iteself with smaller problem sizes, 

   e.g., fact(n)=n*fact(n-1) if n>0
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Recursion (cont'd ...)

§ fact(n) = n * fact(n-1)
§ Recursive fcuntion may be diffcult to 

understand, the key is as follows:
q Do not think how function fact(n-1) execute
q Just assume that fact(n-1) returen the correct 

results
q The ideas of abstract and divide and conquer is 

very useful in not only algorithm design but also 
solving many problems in our lives.
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Mathematical proof

§ Solving any problem has two distinct parts:
q The investigation and the argument.

§ Three templates for mathematical proof
q Direct proof

� Logic deduction
q Proof by contradiction
q Proof by mathematical induction
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Proof by contradiction

§ Consider to show that P→ Q, if we can prove 
(not Q)→(not P), then P→ Q holds
q E.g., prove that there is no largest integer.
Proof: 

Step 1: Assume that there is a largest integer, call it B.

Step 2: consider that C=B+1. C is an integer and C>B.
B then is not the largest integer. A contradiction happens.  
Therefore, the assumption that there is a largest integer is 
incorrect. 
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Proof by induction

§ Prove S(n) = 1 + 2 + …+n = n(n+1)/2, for n ≥1
q Proof: 
1. Check the base case. S(1) = 1 = 1(1+1)/2 √
2. Assume the equation holds for n-1, i.e., 

S(n-1)=1+2+…+(n-1)=(n-1)(n-1+1)/2=(n-1)n/2
3. Consider the case for n. 

S(n) = 1+2+…+(n-1)+n
=  S(n-1) + n
= (n-1)n/2 + n,   by the assumption
= n(n+1)/2      √
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Estimation Techniques

Known as “back of the envelope” or 
“back of the napkin” calculation

1. Determine the major parameters that effect the 
problem.

2. Derive an equation that relates the parameters 
to the problem.

3. Select values for the parameters, and apply 
the equation to yield and estimated solution.
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Estimation Example

How many library bookcases does it 
take to store books totaling one 
million pages?

Estimate:
q Pages/inch
q Feet/shelf
q Shelves/bookcase
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Overall summary

§ We talk about mathematical notation, 
background, and techniques that
q used throughout the book
q provided primarily for review and reference.

§ You might return to the relevant sections 
when you encounter unfamiliar notaton or 
mathematical techniques in later course.
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Exercises

§ Exercise 1
q I1.6: 1.3, 1.12, 1.14

§ Exercise 2
q I2.9: 2.3, 2.5, 2.11, 2.17, 2.30, 2.33
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