Data Structures and Algorithms

Lecture 3: Algorithm Analysis

@ CS311, Hao Wang, SCU

Motivation

- Purpose: Understanding the resouce requirements of an algorithm
	- \Box Time
	- **a** Memory
- Runing time analysis estimates the time required of an algorithm as a function of the input size. (upper and lower bounds)
- Usages:
	- **<u>Estimate growth rate</u>** as input grows.
	- □ Guide to choose between alternative algorithms.

An example

- \blacksquare int sum(int set[], int n) { int temsum, i; tempsum = 1; $\frac{1}{2}$ /* step/execution 1 */ for $(i=0; i< n; i++)$ /* step/execution $n+1$ */ tempsum +=set[i]; /* step/execution n */ return tempsum; /* step/execution 1 */ }
- Input size: n (number of array elements)
- Total number of steps: $2n + 3$

Algorithm Efficiency

- There are often many approaches (algorithms) to solve a problem. How do we choose between them?
- As the cores of computer program design, there are two (sometimes conflicting) goals.
	- $1.$ To design an algorithm that is easy to understand, code, debug.
	- 2. To design an algorithm that makes efficient use of the computer's resources.

Algorithm Efficiency (cont.)

- Goal (1) is the concern of Software Engineering.
- Goal (2) is the concern of data structures and algorithm analysis.
- When goal (2) is important, how do we measure an algorithm's cost?

Analysis and measurements

- Performance measurement (execution time): **machine dependent**.
- § Performance analysis: **machine independent**.
- How do we analyze a program independent of a machine?
	- □ Counting the number steps.

How to Measure Efficiency?

- Empirical comparison (run programs)
- It is difficult to be `fair' due to:
	- **□** Time consuming, especially when there are many alternative algorithms for a problem
	- □ Depend on your programming skills
		- One program may be finely tuned, while the other is not
	- **Q** Depend on the computers running algorithms
		- e.g., CPU, workload, etc.
	- ^q May vary for different test cases
		- One program may favor some test cases

How to Measure Efficiency? (cont.)

- Analytical method: asymptotic algorithm analysis
- Critical resources, factors affecting running time ^q Running time, space (memory or disk)
- For most algorithms, running time depends on "size" of the input.
- Running time is expressed as **T**(*n*) for some function **T** on input size *n*.

How to Measure Efficiency? (cont.)

- Primary consideration when estimation an algorithm's performance is the number of **basic operations** required by the algorithm to process an input of a certain **size**.
	- ^q **Basic operations**
		- The time for performing a basic operation does not depend on particular inputs
		- \bullet E.g., operations for $+$, $-$, X, /
	- ^q **Size**
		- The number of inputs processed

Random Access Machine

■ To analyze the efficiency, we need an abstract machine model

§ RAM

- **□ Each simple operation takes 1 time step**
- ^q Loops and subroutines are not simple operations
- **□ Each memory access takes one time step, no** shortage of memory

What does "size" exactly mean?

• Number of inputs \implies strong

a Strongly polynomial time

• Input length (binary encoded) \implies weak

□ (Weakly) polynomial time

- ^q Most commonly adopted definition
- Input magnitudes \implies even weaker

P Pseudo-polynomial time

Growth rate

Growth rate: A program with $O(f(n))$ is said to have growth rate of f(n). It shows how fast the running time grows when *n* increases.

Growth rates illustrated

Exponential growth

- Say that you have a problem that, for an input consisting of n items, can be solved by going through *2n* cases
- § You use Deep Blue, that analyses *200* million cases per second
	- ^q Input with *15* items, *163* microseconds
	- ^q Input with *30* items, *5.36* seconds
	- ^q Input with *50* items, more than two months
	- ^q Input with *80* items, *191* million years

Examples of Growth Rate

■ Example 1, find the largest value in an array

```
// Find largest value
int largest(int array[], int n) {
  int currlarge = 0; // Largest value seen
  for (int i=0; i<n; i++) // For each val
    if (array[currlarge] < array[i])
      currlarge = i; \frac{1}{1} Remember pos
 return currlarge; // Return largest
}
```
c: the time for performing a comparison operation <, which varies for different computers

n: the number of < operations processed $T(n) = c n$

Examples (cont.)

- Example 2: Assignment statement. $\mathbf{T}(n) = c_1$
- § Example 3:

```
sum = 0;for (i=1; i<=n; i++)for (j=1; j < n; j++)sum++;
}
```

$$
\mathbf{T}(n) = c_2 n^2
$$

The growth rate of a recursive algorithm

```
■ Example 1: int Fact(int n){
  if (n ==0) return 1;
   return n * Fact(n-1);
}
```
§ Denote by **T**(n) the time for computing Fact(n)

```
\Box T(n) = T(n-1)+ c
        = T(n-2) + c + c = T(n-2) + 2c
```
 $=$ **T**(n-n) + nc= c(n+1)

…

Binary Search Position $\mathbf{0}$ $\mathbf 1$ $\overline{2}$ $\overline{4}$ $\overline{7}$ $10[°]$ $12⁷$ $13[°]$ -14 Key

§ How many elements are examined in the worst case?

Binary Search

```
// Return position of element in sorted
// array of size n with value K. 
int binary(int array[], int l, int r, int K) {
  if( l==r ){
      if( array[r] == K ) return r;
      else return -1; //not found
   }
```

```
int m = (l+r)/2; // Check middle
if (K <= array[m]) // Left half
   return binary( array, l, m, K); 
else // Right half
   return binary( array, m+1, r, K);
```
}

The growth rate of a recursive algorithm (cont.)

• Binary search algorithm

-
$$
T(n) = c + T(n/2)
$$

\n= $c + c + T(n/4)$
\n= $2c + T(n/2^2)$
\n= $3c + T(n/2^3)$

$$
= c \log n + T(n/2^{\log n})
$$

$$
= c \log n + T(n/n)
$$

$$
= c (\log n + 1)
$$

The growth rate of a recursive algorithm (cont.)

§ Hanoi Puzzle

The growth rate of a recursive algorithm (cont.) //moves *ⁿ* rings from pole *^s* to pole *^f* with the help of pole *^t*

§ void Hanoi(int n, int s, int f, int t){

if(n == 1) printf("move ring 1 from poles %d to %d\n", s, f); else{

// move the upmost *n-1* rings in pole *s* to pole *t* with the help of pole *f*

Hanoi(n-1, s, t, f);

printf("move ring %d from %d pole to %d pole\n", n, s, f); // moves the n-1 rings in pole *t* to pole *f* with the help of pole *s*

Hanoi(n-1, t, f, s);

}

The growth rate of a recursive algorithm (cont.)

- Denote by **T**(n) the running time of Hanoi
- **T**(n)=**T**(n-1) + c + **T**(n-1) $= 2T(n-1) + c$ $=2(2T(n-2)+c) + c$ $=2^{2}T(n-2)+2c+c$ $=2^{3}T(n-3)+2^{2}C+2C+C$ … =*2n***T**(n-n)+ *2n-1*c +…+ *22*c + 2c+c $=2^{n-1}c + ... + 2^2c + 2c + c$, as $\mathbf{T}(0)=0$ =(*2n***-1)c**

The growth rate of a recursive algorithm (cont.)

- The steps for analyzing the growth rate of a recursive algorithm
	- □ Derive the recurrence relation of **T**(n)
		- E.g., **T**(n)=**T**(n-1)+c for the factorial function and **T**(n)=c+**T**(n/2) for the binary search algorithm
	- **□** Solve the recurrence relation **T**(n)
		- see the relation with $T(n-1)$ and $T(n-2)$, or $T(n/2)$ and $T(n/4)$, etc, e.g., $T(n-1)=T(n-2)+c$
		- Expand T(n) with substitute
		- Expand $T(n)$ until the base case of $T(0)$ or $T(1)$
		- Sum up some terms

The Master Method

§ A "cookbook" method for estimating the growth rate of a recursive algorithm

\Box The CLRS book (3rd edition), Sections 4.5

Theorem 4.1 (Master theorem)

Let $a > 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

 $T(n) = aT(n/b) + f(n)$,

where we interpret n/b to mean either $|n/b|$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large *n*, then $T(n) = \Theta(f(n))$.

Glossary

- growth rate
	- ^q The rate at which the **cost** of an algorithm grows as **the size of inputs** grows
- linear growth rate / linear time cost

^q *T(n) = cn*

- **quadratic growth rate**
	- $T(n)=cn^2$
- exponential growth rate
	- $T(n)=2^n$

Growth Rates Comparison

Faster Computer or Algorithm?

What happens when we buy a computer 10 times faster?

Best, Worst, Average Cases

- Not all inputs of a given size take the same time to run.
- Sequential search for K in an array of *n* integers:
	- Begin at first element in array and look at each element in turn until *K* is found
- Best case: Find at first position. Cost is 1 compare
- § Worst case: Find at last position. Cost is *n* compares
- § Average case: (*n*+1)/2 compares

Which Analysis to Use?

- Best case analysis is too optimistic
- While average time appears to be the fairest measure, it may be difficult to determine.
	- ^q require knowledge of the distribution of inputs
- When is the worst case time important?
	- □ Give an upper bound on the running time
		- Important for real-time algorithms
	- a Worst case running time usually is in the order of average case running time, with only a few times
longer

Asymptotic Analysis: Big-Oh

- Definition: For **T**(*n*) a non-negatively valued function, $T(n)$ is in the set $O(f(n))$ if there exist two positive constants **c** and n_0 such that $\mathbf{T}(n) \leq cf(n)$ for all $n > n_0$.
- Usage: The algorithm is in O(n^2) in [best, average, worst] case.
- Meaning: For all data sets big enough (i.e., $n > n_0$), the algorithm always executes in **less than** *cf***(***n***)** steps in [best, average, worst] case.

Big-Oh Notation (cont)

- Big-Oh notation indicates an upper bound on a growth rate
- **Example 1: If** $\mathbf{T}(n) = 3n^2$ **then** $\mathbf{T}(n)$ **is in** $O(n^2)$ **.**
- **Example 2: If** $\mathbf{T}(n) = 3n^2$ **then** $\mathbf{T}(n)$ **is in** $O(n^3)$ **.**
- Use the tightest upper bound: \Box While **T**(*n*) = 3*n*² is in O(*n*³), we prefer O(*n*²).

Big-Oh Examples

- Definition does not require upper bound to be tight, though we would prefer as tight as possible
- **Example 1:** What is Big-Oh of $T(n) = 3n+3$
	- **Let f(n) = n, c = 6 and n₀ = 1;** $T(n) = O(f(n)) = O(n)$ because 3n+3 ≤ 6f(n) if n ≥ 1
	- **Let f(n) = n, c = 4 and n₀ = 3;** $T(n) = O(f(n)) = O(n)$ because 3n+3 ≤ 4f(n) if n ≥ 3 **Let f(n) = n², c = 1 and n₀ = 5;** T(n) = O(f(n)) = O(n2) because 3n+3 ≤ (f(*n*))2 if *n* ≥ 5
- § We certainly prefer *O*(*n*).

Big-Oh Examples

- § **Example 2**: Finding value *X* in an array (average cost).
- \blacksquare How to identify constants *c* and n_0 ?

\n- $$
T(n) = c_s n/2
$$
.
\n- $C_s n/2$
\n- $C_s n/2 \leq c_s n$
\n- $C_s n/2 \leq c_s n$
\n- $C_s n/2 \leq c_s n$
\n- $C_s n$
\n

Big-Oh Examples

- **Example 3:** $T(n) = c_1 n^2 + c_2 n$ in average case.
- $c_1 n^2 + c_2 n \ll c_1 n^2 + c_2 n^2 \ll (c_1 + c_2)n^2$ for all *n* > 1
- **T**(*n*) \le *cn*² for *c* = *c*₁ + *c*₂ and *n*₀ = 1.

Therefore, $T(n)$ is in $O(n^2)$ by the definition.

Example 4: $T(n) = c$ **.** We say this is in $O(1)$.

Rules for Big-Oh

- **•** If $T(n) = O(c f(n))$ for a constant c, then $T(n) = O(f(n))$
- **•** If $T_1(n) = O(f(n))$ and $T_2(n)=O(g(n))$ then $T_1(n) + T_2(n) = O(max(f(n), g(n)))$
- **•** If $T_1(n) = O(f(n))$ and $T_2(n)=O(g(n))$ then $T_1(n) * T_2(n) = O(f(n) * g(n))$
- **F** If $T(n) = a_m n^k + a_{m-1} n^{k-1} + ... + a_1 n + a_0$ then $T(n) = O(n^k)$
- Thus
	- **u** Lower-order terms can be ignored.
	- **□ Constants can be thrown away.**

More about Big-Oh notation

- Asymptotic: Big-Oh is meaningful only when n is sufficiently large
	- $n \geq n_0$ means that we only care about large size problems.
- Growth rate: A program with $O(f(n))$ is said to have growth rate of f(n). It shows how fast the running time grows when n increases.

Typical bounds (Big-Oh functions)

- § Typical bounds in an increasing order of growth rate
	- FunctionName
		- *O*(1), Constant *O*(*log n*), Logarithmic
		- *O*(*n*), Linear
		- *O*(*nlog n*), Log linear
		- *O*(*n*2), Quadratic
		- *O*(*n*3), Cubic
		- *O*(2*ⁿ*), Exponential

How do we use Big-Oh?

- Programs can be evaluated by comparing their Big-Oh functions with the constants of proportionality neglected. For example,
	- $T_1(n) = 10000$ n and $T_2(n) = 9$ n. The time complexity of $T_1(n)$ is equal to the time complexity of $T_2(n)$.
- The common Big-Oh functions provide a "yardstick" for classifying different algorithms.
- Algorithms of the same Big-Oh can be considered as equally good.
- A program with *O(log n)* is better than one with *O(n)*.

Nested loops

- Running time of a loop equals running time of the code within the loop times the number of iterations.
- Nested Loops: analyze inside out
	- 1 for $(i=0; i \le n; i++)$
	- 2 for $(i = 0; j < n; j++)$
	- 3 k++
- Running time of lines 2-3: O(n)
- § Running time of lines 1-3: O(n2)

Consecutive statements

■ For a sequence S1, S2, .., Sk of statements, running time is maximum of running times of individual statements

```
for (i=0; i \le n; i++)x[i] = 0;for (i=0; i\le n; i++)for (i=0; i \le n; i++)k[i] += i+j;
• Running time is: O(n^2)
```
Conditional statements

- The running time of If (cond) S1 else S2
	- is running time of *cond* plus the max of running times of S1 and S2.

More nested loops

- 1 int $k = 0$;
- 2 for $(i=0; i \le n; i++)$
- 3 for $(j=i; j \le n; j++)$

4 k++

- Running time of lines 3-4: n-i
- Running time of lines 1-4:

$$
\sum_{i=0}^{n-1} (n-i) = n(n+1)/2 = O(n^2)
$$

More nested loops

- 1 int $k = 0$;
- 2 for $(i=1; i \le n; i^*=2)$
- 3 for $(i=1; i \le n; i++)$

4 k++

- § Running time of inner loop: O(n)
- What about the outer loop?
- In *m*-th iteration, value of i is 2^{m-1}
- **Suppose** $2^{q-1} < n \leq 2^q$, then outer loop is executed q times.
- § Running time is O(n log n). Why?

A more intricate example

- 1 int $k = 0$;
- 2 for $(i=1; i \le n; i^*=2)$
- 3 for $(i=1; j$
- 4 k++
- § Running time of inner loop: O(i)
- Suppose $2^{q-1} < n \leq 2^q$, then the total running time:
	- $1 + 2 + 4 + ... + 2^{q-1} = 2^q 1$
- **Running time is** $O(n)$ **.**

A Common Misunderstanding

- § "The best case for my algorithm is *n*=1 because that is the fastest." WRONG!
	- \triangleright Big-oh refers to a growth rate as *n* grows to ∞ .
	- ^Ø Best case is defined as which input of size *n* is cheapest among all inputs of size *n*.
	- \triangleright Analyze the growth rate for best/average/worst cases, e.g., *T(n)=2n2+3n+6*, then obtain the upper bound for the growth rate, e.g., *T(n)=O(2n2)*

Lower Bounds

- To give better performance estimates, we may also want to give lower bounds on growth rates
- Definition (omega): $T(n) = \Omega(f(n))$ if there exist some constants c and n_0 such that T(n) \geq cf(n) for all n \geq n₀

"Exact" bounds

- Definition (Theta): $T(n) = \Theta(f(n))$ if and only if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$.
- An algorithm is $\Theta(f(n))$ means that $f(n)$ is a tight bound (as good as possible) on its running time.
	- **□** On all inputs of size n, time is $\leq f(n)$
	- **□** On all inputs of size n, time is $\geq f(n)$

$$
int k = 0;
$$

for (i=1; i<n; i*=2)

for (j=1;j<n; j++)

$$
k^{++}
$$

This program is $O(n^2)$ but not $\Omega(n^2)$; it is $\Theta(n \log n)$

Big-Omega

- Definition: For **T**(*n*) a non-negatively valued function, $\mathbf{T}(n)$ is in the set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $\mathbf{T}(n) \geqslant c g(n)$ for all $n > n_0$.
- **Example 2 Lower bound** on a growth rate
- Meaning: For all data sets big enough (i.e., *n* $> n_0$), the algorithm always executes in more than *c.g*(*n*) steps.

Big-Omega Example

•
$$
T(n) = c_1 n^2 + c_2 n
$$
.

$$
c_1n^2 + c_2n
$$
 $> = c_1n^2$ for all $n > 1$.
\n**T**(n) $> = cn^2$ for $c = c_1$ and $n_0 = 1$.

Therefore, $T(n)$ is in $\Omega(n^2)$ by the definition.

- \blacksquare **T**(*n*) in Ω (*n*) as **T**(*n*) >= *c*₂*n* for *n* >= 1
- We want the greatest lower bound.

Theta Notation

- When big-Oh and Ω meet, we indicate this by using Θ (big-Theta) notation.
- **•** Definition: An algorithm is said to be $\Theta(h(n))$ if it is in $O(h(n))$ and it is in $\Omega(h(n))$.

•
$$
T(n) = c_1 n^2 + c_2 n
$$
.

- \triangleright T(n) = $\Theta(n^2)$ as T(n) in $O(n^2)$ and T(n) in $\Omega(n^2)$
- For **T**(n) given by an algebraic equation, we always give a Θ analysis

Theta Notation (cont.)

- \blacksquare We may not have $\Theta(n)$ for some $\mathsf{T}(n)$
- Example
	- $T(n) = n$ for all odd $n \ge 1$
		- n^2 for all even $n>=1$
- Upper bound
	- ^q **T**(n) in O(*n*²*)*
- Lower bound
	- \Box **T**(n) in Ω (n)

big-Oh and Ω do not meet

An Alternative Definiton for Ω

- **T**(*n*) is in Ω (*g*(*n*)) if there exists a positive constant *c* such that **T**(*n*)>=*cg(n)* for an infinite number of values for *n*.
- **Using this definition,** $T(n)$ **is in** $\Omega(n^2)$ **for the** example in the previous slide.
- Caveat: Not a lower bound for the function, but for a "subsequence"

A Common Misunderstanding

- Confusing worst case with upper bound, and best case with lower bound
- Worst case refers to the worst input from among the choices for possible inputs of a given size.
- Upper bound refers to a growth rate, and the rate may be for the worst case, average case, or the best case

Simplifying Rules

- 1. If $f(n)$ is in $O(g(n))$ and $g(n)$ is in $O(h(n))$, then $f(n)$ is in O(*h*(*n*)).
	- a. If **T**(n) in O(n), then T(n) in O(n^2)
- 2. If $f(n)$ is in $O(kg(n))$ for any constant $k > 0$, then $f(n)$ is in O(*g*(*n*)).
	- Ignore constants
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $(f_1$ $+ f_2(n)$ is in O(max($g_1(n), g_2(n)$)).
	- a. Drop low order terms, e.g. $T(n) = n^2 + n$ is in $O(n^2)$
- 4. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$ then $f_1(n)f_2(n)$ is in $O(q_1(n)q_2(n))$.

Running Time Examples (1)

Example 1: $a = b$;

This assignment takes constant time, so it is $\Theta(1)$.

■ Example 2:

```
sum = 0;for (i=1; i<=n; i++)sum += n;
```

```
T(n) = \Theta(n)
```
Running Time Examples (2)

■ Example 3:

// take time $\Theta(1)$
sum = 0; // take time $\Sigma i = \Theta(n^2)$ for $(i=1; i<=n; i++)$ for $(i=1; j<=i; j++)$ $\frac{sum++;}{\sqrt{max+1}}$ for (k=0; k²n; k++) $A[k] = k;$

$$
\begin{array}{ll}\n\blacksquare \text{ T (n)} = \Theta(1) + \Theta(n^2) + \Theta(n) = \Theta(n^2) \\
\blacksquare \text{ Drop low order terms}\n\end{array}
$$

Running Time Examples (3)

■ Example 4:

$$
sum1 = 0;\n// takes time $n^2 = \Theta(n^2)$
\nfor (i=1; i<=n; i++)
\nfor (j=1; j<=n; j++)
\nsum1++;
$$

sum2 = 0;
\n// takes time
$$
\Sigma i = n(n+1)/2 = \Theta(n^2)
$$

\nfor (i=1; i<=n; i++)
\nfor (j=1; j<=i; j++)
\nsum2++;

Running Time Examples (4)

§ Example 5: $sum1 = 0$; for $(k=1; k<=n; k*=2)$ for $(i=1; j<=n; j++)$ $sum1++;$ \Box Each inner loop takes time $\Theta(n)$ ^q How many inner loops? log n \Box $\Theta(n \log n)$.

@ CS311, Hao Wang, ScU $2n-1=0(n)$ 58 § Example 6: $sum2 = 0$; for $(k=1; k<=n; k*=2)$ for $(j=1; j<=k; j++)$ $sum2++;$ ^q Each inner loop takes k basic operations ^q Total time: $1+2+4+8+...+n/2+n$ $=\sum 2^k$ for $k=0$ to log n

Other Control Statements

- \blacksquare while loop: Analyze like a for loop.
- \blacksquare if statement: Take greater complexity of then/else clauses.
- \blacksquare switch statement: Take complexity of most expensive case.
- Subroutine call: Complexity of the subroutine.

Analyzing Problems

■ Upper bound: Upper bound of the best **known** algorithm.

 \Box e.g., O(n log n) for known sorting algorithms

- § Lower bound: Lower bound for **every possible** algorithm.
- It is useful to see whether an algorithm is good enough

Analyzing Problems: Example

- Common misunderstanding: No distinction between upper/lower bound when you know the exact running time.
- Example of imperfect knowledge: Sorting
- 1. Cost of $I/O: \Omega(n)$.
- 2. Bubble or insertion sort: O(*n*2).
- 3. A better sort (Quicksort, Mergesort, Heapsort, etc.): O(*n* log *n*).
- 4. We prove later that sorting is $\Omega(n \log n)$.

Multiple Parameters

- § Compute the rank ordering for all *C* pixel values in a picture of *P* pixels.
- for $(i=0; i< C; i++)$ // Initialize count count $[i] = 0;$
- for $(i=0; i< P; i++)$ // Look at all pixels count[value(i)]++; // Increment count sort(count); $\frac{1}{3}$ // Sort pixel counts

If we use *P* as the measure, then time is $\Theta(P)$.

• More accurate is $\Theta(P + C \log C)$.

Space Bounds

- Space bounds can also be analyzed with asymptotic complexity analysis.
- Time: Algorithm
- Space: Data Structure

Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
	- Encoding or packing information
		- Boolean flags
	- Table lookup
		- Fibonacci calculation
- Disk-based Space/Time Tradeoff Principle: The smaller you make the disk storage requirements, the faster your program will run.
	- \triangleright Disk is about 1,000 times slower than memory

Summary: lower vs. upper bounds

- This section gives some ideas on how to analyze the complexity of programs.
- We have focused on worst case analysis.
- **Upper bound** $O(f(n))$ **means that for sufficiently** large inputs, running time T(n) is bounded by a multiple of f(n).
- Lower bound $\Omega(f(n))$ means that for sufficiently large n, there is at least one input of size n such that running time is at least a fraction of f(n)
- \blacksquare We also touch the "exact" bound $\Theta(f(n))$.

Summary: algorithms vs. Problems

- Running time analysis establishes bounds for individual algorithms.
- Upper bound O(f(n)) for *a problem*: there is some O(f(n)) algorithms to solve the problem.
- § Lower bound Ω(f(n)) for *a problem*: every algorithm to solve the problem is $\Omega(f(n))$.
- They different from the lower and upper bound of an algorithm.

Conclusion

- § Growth rate of an algorithm
- § The worst, average, and best cases
- The upper and low bounds on a growth rate \Box Big O, big Ω , big Θ
	- **□ Consider only the most important term**
	- **q** Ignore low order terms
- The cost of an algorithm vs. the cost of a problem

Homework 1

- See course webpage
- § Deadline: 11:59pm, Sept. 22, 2024
- Submit to: cs_scu@foxmail.com
- File name format:
	- □ CS311_Hw1_yourID_yourLastName.doc (or pdf)