Data Structures and

Algorithms

Lecture 5: Lists, Stacks, and Queues (ll)

@ CS311, Hao Wang, SCU



. An application of lists -- merge sort

@ CS311, Hao Wang,

llG

3 (27|38 |43 91082
1T / 19
3/9(10(27 (38|43 |82 (20

e e wnin |38 |27 |43 |3 | 9|82 10
steps are processed\.——\ﬁ%a‘|
38|27 |43 |3 9(82 |10
IR
38 | 27 43 | 3 9 |82 10
3 '/ 7 13 '/ \ \‘ 17
4
38 27 43 3 9 82 10
NGt Y T e
27 | 38 3143 9 |82 10
18




Merge Sort

If there is only one number in the list, return;

Split a list into two sub-lists with almost equal
length

Recursively sort the two sub-lists, where the
numbers in each sub-lists are in increasing
order

Merge the two sub-lists into one list such that
the number the merged list are in increasing
order

@ CS311, Hao Wang, SCU



‘ How to merge two sorted linked-lists?

-di-28-E8-08-08-
~di-08-Ui-

~{di-H8-08-08-08-di-0n-oi-




Merge two sorted linked-lists

/**

* Definition for singly-linked list.

*

*

* %k ok o ok

struct ListNode {
int val;
ListNode *next;

ListNode() : val(0), next(nullptr) {}
ListNode (int x) : val(x), next(nullptr) ({}

ListNode (int x, ListNode *next)

: val (x) , next(next) {}

(@ CS311, Hao Wang, SCU



Merge two sorted linked-lists

/** Recursion Method */
class Solution{
public:
ListNote* mergeTwolLists (ListNode* 11, ListNote* 12) ({
if('11){ // 11 is NULL
return 12;
} else if('12) { // 12 is NULL
return 11;
} else if(ll->val < 12->val) {
11->next = mergeTwoLists (1l1->next, 12);
return 11;
} else { // 1ll1->val >= 12->val
12->next = mergeTwoLists (11, 12->next);
return 12;
}
}
}:

(@ CS311, Hao Wang, SCU 5



Recursion Method

Function

( [2, [I1is NULL

[1, [2 is NULL
merge(l1 — next, [2), if 1 >wval<I2- val
merge(l1,12 — next), if 1 ->val =12 - val

merge(l1,[2) = <

\

Complexity:
- Time: O(n+m)
- Space: O(n+m)

(@ CS311, Hao Wang, SCU



Merge two sorted sub-lists

/** Iteration Method */
class Solution{
public:
ListNote* mergeTwolLists (ListNode* 11, ListNote* 12) ({
ListNote* tem = new ListNode (0) ;
ListNode* ans = tem;
while (11'=NULL && 12'=NULL)
{ 1f (11->val < 12->val)
{ tem->next = 11; 11
else
{ tem->next

11->next; }

12; 12 12->next; }

}

if (11'=NULL) tem—>next
if (12'=NULL) tem—>next
return ans->next;

}

11;
12;

};

(@ CS311, Hao Wang, SCU 7



Iteration Method

Algorithm steps
Initialize two lists tem, ans;

Iteratively merge two nodes;
Merge the small one, and move pointer forward

Merge tail the last non-NULL list;
Return the result.

Complexity:
- Time: O(n+m)
- Space: O(1)

(@ CS311, Hao Wang, SCU



How to merge k sorted sub-lists?

Merge k sorted linked lists and return it as one
sorted list. Analyze and describe its complexity.

Example:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[

1->4->5,

1->3->4,

2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6

(@ CS311, Hao Wang, SCU



Stacks

@ CS311, Hao Wang, SCU



What 1s a Stack?

A stack is a list with the restriction that
iInsertions and deletions can be performed in
only one position, namely, the end of the list,
called the top.

Operations: PUSH (insert) and POP (delete)

Top

QN | || W

(@ CS311, Hao Wang, SCU 11



Stacks
= LIFQO: Last In, First Out

Push

Push

SN
_\NQ)QJ
o
Amwh«/
o
Awwhm«/

3 Push
2 m;\
"y 2
1

6
/“V 5 //P(;;
/’ 4 [ POp 5
{3 / Pop 4 4
> 2 / Pop 3 3 3
I/ Pop 5 2 2 2
1 I 1 - 1 oy

SCU 12



Stacks

Notation:
Insert;: PUSH

Remove: POP
The accessible element is called TOP.

Restricted form of list: Insert and remove only
at front of list.

@ CS311, Hao Wang, SCU 13



Stack ADT

// Stack abstract class
template <typename E> class Stack {
public:

void clear () ;

/** Push an element onto the top of the stack.
@param it Element being pushed onto the stack.*/
void push (E& 1t);

/** Remove and return top element.
@return The element at the top of the stack.*/

E pop ()’

/** @return A copy of the top element. */
E topValue () ;

/** @return Number of elements in the stack. */
public int length() ;
Y

@ CS311, Hao Wang, SCU 14



Stack ADT Interface

The main functions in the Stack ADT are (S 1s the stack)

boolean isEmpty();
boolean isFull(S);
void push(S, item);
void pop(S);

void clear(S);

ltem top(S);

ltem topAndPop(S);

I/ return true if empty

I return true if full

/l insert item into stack

// remove most recent item

// remove all items from stack
/I retrieve most recent item

/] return & remove most recent item

(@ CS311, Hao Wang, SCU

15



Sample Operation

m) Stack S = malloc(sizeof (stack)):;

== cush (S, “a”);

=) push (S, “b”); S

-push(S, “c”) ; d

=) d=top (S) ;

mm) POP (S) ;

== push (S, “e”);

mm) POP (S) ;

@ CS311, Hao Wang, SCU



Implementation of Stacks

= Array-based stacks

= Linked stacks

Last element

Stack implemented using an array

First element

.

~ Empty slots

Top of stack

push l

I pop

Stack implemented using a linked list

Bottom of stack

o
o

@ CS311, Hao Wang, SCU

17



Array-Based Stacks

// Array-based stack implementation

private:
int maxSize; // Maximum size of stack
int top; // Index for top element

E *listArray; // Array holding elements

Questions:
Which end is the top of the stack?
Array[0] is the bottom and array[top-1] is the top
Where does "top" point to?
Array index for the top element currently in the stack.

What is the cost of the operations?
®(1) for each push or pop operation.

(@ CS311, Hao Wang, SCU 18



Implementation by Array

Use Array with a top index pointer as an implementation of stack

StackAr

(@ CS311, Hao Wang, SCU 19



Code

void clear (STACK *pS)

{
pS—->top = -1;
typedef struct { }
int A[MAX];
int top: BOOLEAN isEmpty(STACK #*pS)
} STACK; {
return (pS->top < 0);
}
BOOLEAN isFull (STACK *pS)
{
return (pS->top >= MAX-1);
}

@ CS311, Hao Wang, SCU 20



More code

BOOLEAN pop(STACK *pS, int *px)
{
if (isEmpty(pS))
return FALSE;
else {
(*px) = pS—>A[(pS->top)—1;
return TRUE;

@ CS311, Hao Wang, SCU

21



More code

BOOLEAN push(int x, STACK *pS)
{
if (isFull(pS))
return FALSE;
else {
pS->A[++(pS->top)] = x;
return TRUE;

@ CS311, Hao Wang, SCU

22



Linked Stacks

// Linked stack implementation

private:
int size; // Number of elements

Link<E>* top; // Pointer to first element

Push/PoP operations

Elements are 1nserted and removed only
from the head of the 1list.

Which end is the top of the stack?

Linked list head
Where does "top" point to?

The new/next link node for stores the top nodes
What is the cost of the operations?

O(1)

(@ CS311, Hao Wang, SCU 23



Implementation by Linked Lists

Can use a Linked List as implementation of stack

StackLL

Top of Stack = Front of Linked-List

LinkedListltr

(@ CS311, Hao Wang, SCU 24



Code

struct Node {
int element;
Node * next;
¥
typedef struct Node * STACK;

void clear (STACK *pS)
{

(*pS) = NULL;
¥

BOOLEAN isEmpty(STACK *pS)

{
return ((*pS) == NULL);

}

BOOLEAN isFull(STACK *pS)

{
return FALSE;

¥

@ CS311, Hao Wang, SCU

25



More code

BOOLEAN pop(STACK #pS, int *px)

{
if ((*pS) == NULL)
return FALSE;
else {
(*px) = (*pS)->element;
(*pS) = (*pS)->next;
return TRUE;
I
¥

@ CS311, Hao Wang, SCU

26



More Code

BOOLEAN push(int x, STACK #pS)

{
STACK newCell,;
newCell = (STACK) malloc(sizeof (struct CELL));
newCell->element = X;
newCell->next = (*pS);
(¥pS) = newCell;
return TRUE;
}

@ CS311, Hao Wang, SCU 27



Effects of Linked Stacks

L —w a| ——m b | ——m c | ®
(a) List L.
L —e — = — = b — -

(b) After executing push(x, L).

L —={ b — - | ®

(c) After executing pop(L,zx) on list L of (a).
/

(@ CS311, Hao Wang, SCU



Array-based »s Linked Stacks

Time comparison
Operations for both two stacks take constant time.

Space comparasion

Array-based stack has an initially fixed-size array.

Linked stack can shrink and grow but requires
the overhead of a link field for every element.

(@ CS311, Hao Wang, SCU 29



Applications of Stacks

Many application areas use stacks:
line editing
bracket matching
postfix calculation
function call stack

(@ CS311, Hao Wang, SCU

30



Line Editing

A line editor would place characters read into a
buffer but may use a backspace symbol (denoted by
<—) to do error correction

Refined Task

read 1n a line
correct the errors via backspace

print the corrected line 1n reverse

Input :|abc defgl«2klp{X<«<«wxyz

Corrected Input  : |abc defg2klpwxyz

Reversed Output : | zyxwplk2gfed cba

@ CS311, Hao Wang, SCU 31



The Procedure

Initialize a new stack

For each character read:
if it is a backspace, pop out last char
entered
if not a backspace, push the char into

stack
To print in reverse, pop out each char

for output
IHHHN

Input : fgheree«yz

Corrected Input fyz

Reversed Output : | zyE

Stack

(@ CS311, Hao Wang, SCU

32



Bracket Matching Problem

Ensures that pairs of brackets are properly matched

* An Example: {a, (b+f[4])*3,d+f[5]}

» Bad Examples:
(..)..) // too many closing brackets
(..(..) // too many open brackets
[..(..]..) // mismatched brackets

(@ CS311, Hao Wang, SCU 33



Informal Procedure

Initialize the stack to empty
For every char read
if open bracket then push onto stack

if close bracket, then
return & remove most recent item
from the stack
if doesn’t match then flag error

if non-bracket, skip the char read

Stack

@ CS311, Hao Wang, SCU




Postfix Calculator

Computation of arithmetic expressions can be efficiently
carried out in Postfix notation with the help of a stack.

Infix - arg1 op arg2
Prefix - op arg1 arg2
Postfix - arg1 arg2 op
postfix
2 3 * 4 +

(2*3) +4

infix /

2*3+4

\ 2 3 4 + *

2% (3+4)

(@ CS311, Hao Wang, SCU 35



Informal Procedure

Initialize stack S
For each item read.
If it is an operand,
push onto the stack
If it is an operator,
pop arguments from stack;
perform operation:;
push result onto the stack

Expr

2 push (S, 2)
3 push (S, 3)
A push (S, 4)
_|_

arg2=topAndPop (S)
argl=topAndPop (S)
push (S, argl+arg2?)
. arg2=topAndPop (S)
argl=topAndPop (S)
push (S, argl*arg2)

Stack

@ CS311, Hao Wang, SCU

36



Summary

The ADT stack operations have a last-in,
first-out (LIFO) behavior.

Stack can be implemented using array-
based or linked lists.

Stack has many applications

algorithms that operate on algebraic
expressions

a strong relationship between recursion and
stacks exists.

@ CS311, Hao Wang, SCU



Queues

@ CS311, Hao Wang, SCU

38



What 1s a Queue?

Like stacks, queues are lists. With a queue,
however, insertion is done at one end whereas
deletion is done at the other end.
Queues implement the FIFO (first-in first-out)
policy. E.g., a printer/job queue!
Two basic operations of queues:
dequeue: remove an item/element from front
engueue: add an item/element at the back

dequeue «— [—— enqueue

(@ CS311, Hao Wang, SCU

39



Queue ADT

Queues implement the FIFO (first-in first-out) policy
An example 1s the printer/job queue!

enqueue(o)

dequeue()

isEmpty()
getFront() createQueue()

(@ CS311, Hao Wang, SCU 40



Sample Operation

=) Queue *Q;

mm) cnqueue (Q, “a”); q

mm) enqueue (Q, “b”);

\

i
.

mm) enqueue (Q, “c”);

mm) d=getFront (Q) ;

front
mm) dequeue (Q) ;

l l back
mm) cnqueue (Q, “e”); © €

mm) dequeue (Q) ;

@ CS311, Hao Wang, SCU 41



Queue ADT interface

The main functions in the Queue ADT are (Q 1s the
queue)

void enqueue (it, Q) // insert it to back of Q
void dequeue (Q); // remove oldest item

ITtem getFront(Q); // retrieve oldest item
boolean isEmpty (Q);// checks if Q is empty
boolean isFull(Q);// checks if Q is full

void clear (Q);// make Q empty

(@ CS311, Hao Wang, SCU

42



Implementation ot Queues

Array-based queue
Circular queue
Linked queue

(@ CS311, Hao Wang, SCU

43



Array-based Queue

Use Array with front and back/rear pointers as
implementation of queue

Queue

.back/rear

(@ CS311, Hao Wang, SCU 44



Array-based Queue

The queue drift’ towards to the end of the
array

Cannot enqueue when rear = (maxSize-1),
even If there are some space left

30| 5 |15|25

(@ CS311, Hao Wang, SCU

45



Circular Queue

To implement queue, it is best to view arrays as circular structure

0 I 3 4 5 6 7 8 9

A|B| C| D| E| F

T
\\\\\\back

front
9 front
Circular view of arrays,
bacg
\ 2
7
G
F
6
5 4

(@ CS311, Hao Wang, SCU 46



How to Advance

Both front & back pointers should make advancement until they
reach end of the array. Then, they should re-point to beginning of
the array

adv (front) ;
adv (back) ;

front
back

int adv(int p) Alternatively, use modular arithmetic:

{ int r = p+1; int adv(int p)

if (r<maxsize) return r; { return ((p+l) % maxsize);

else refiurn O;
’ }
ey /
/

upper bound of the array mod operator

(@ CS311, Hao Wang, SCU 47



Circular Queue-cont.

Enqueue
rear = (real+1)%maxSize;
Place the new element at the array with index rear

Dequeue

Serve the first element in the queue, i.e., array[front]
front=(front+1)%maxSize;

Initially

front = 0, rear = maxSize-1;

(@ CS311, Hao Wang, SCU 48



Ettects of Circular Queue

The position of the element next to the i-th element

is (i+1)%maxSize.

Length=(rear+size-front+l) SmaxSize
where % is the modulus operator.

front
front

4
&

4

rear

() (b)

(@ CS311, Hao Wang, SCU 49



Queue *Q;
enqueue (Q,
enqueue (Q,
enqueue (Q,
dequeue (Q) ;
dequeue (Q) ;
enqueue (Q,

enqueue (Q,

11181111l

dequeue (Q) ;

A\ 144

\\b//

A\ 144

\\d//

A\ 144

) ;
) ;
) ;

) ;
) ;

Sample

F=front
B=back

mmm| T

@ CS311, Hao Wang, SCU

50



7 front 6 7  front

rear
6 6
front
5/°\ R VAN éo 5/°\ ﬁ’o/
N
B/
4 1 4 J1 4 VA
32 3

a
Emntv auene A enamnene R. (" enanene

empty queue : (rear +1)% maxSize = front
6

(@ CS311, Hao Wang, SCU



F
S 0 5 0
4 1
/C 2. 4 C D 1
rear 3\1}0 ot 3 ‘1}0%1 ( rear
Enqueue D.E,F,G,H,I,J

Full queue : (rear+1)% maxSize = front

Cannot distinguish an empty queue and a full queue !

(@ CS311, Hao Wang, SCU 52



An empty or a full queue?

Solution 1: count how many elements in the
queue

Empty queue if and only if the value of the
counteris O

Full queue iff the value of the counter is equal to

the size of the array
Solution 2: allocate an array with one more
space for storing no more than n elements,
l.e., the size of the array is n+1

The textbook adopts this solution.

@ CS311, Hao Wang, SCU



Checking for Full/Empty State

What does (F==B) denote?

Queue el 9 Queue
Empty F F Full
Stat Stat
ate B B ate
size 0 size 4

Alternative - Leave a Deliberate Gap!

No need for size field.

Full Case : (adv (B) ==F) B F

(@ CS311, Hao Wang, SCU o4



Linked Queue

Can use Linked Lists as underlying implementation of Queues

Queue

1lst

LinkedList

(@ CS311, Hao Wang, SCU 95



struct Node {
int element;
Node * next;

55

struct QUEUE {
Node * front;
Node * rear;

55

Code

void clear (QUEUE *pQ)

{

pQ->front = NULL;
}
BOOLEAN isEmpty(QUEUE *pQ)
{

return (pQ->front == NULL);
}
BOOLEAN isFull (QUEUE *pQ)
{

return FALSE;
}

(@ CS311, Hao Wang, SCU

56



More code

BOOLEAN dequeue(QUEUE *p(Q, int #*px)

{
if (isEmpty(pQ))
return FALSE;
else {
(*px) = pQ->front->element;
plQ->front = pQ->front->next;
return TRUE;
I
}

@ CS311, Hao Wang, SCU

o7



More code

BOOLEAN enqueue(int x, QUEUE *pQ)

{
if (isEmpty(pQ)) {
pQ->front = (LIST) malloc(sizeof (struct CELL));
pQ->rear = pQ->front;
¥
else {
pRQ->rear->next = (LIST) malloc(sizeof (struct CELL));
pQ->rear = pl->rear->next;
¥
pl->rear->element = X;
pl->rear->next = NULL;
return TRUE;
¥ CELL 1s a list node

@ CS311, Hao Wang, SCU 58



Application of Queue(1)- Butter

Low speed devices

Queues for data buffer

High speed processor

(@ CS311, Hao Wang, SCU

59
59



Application of Queue(2)- Message Queue

Asynchronous collaboration between different
components.

E.g., message queue in Windows OS.

Message consumer Message producer

\dequeue /mueue
60

(@ CS311, Hao Wang, SCU 60



Dictionaries

// The Dictionary abstract class.
template <typename Key, typename E>
class Dictionary ({

private:
- void operator =(const Dictionaryé&) {}
= A key-value pair Dietsorary (const Bicxioneeyer O
public:
Dictionary () {} // Default constructor

virtual “Dictionary() {} // Base destructor

// Reinitialize dictionary
virtual void clear() = 0;

// Insert a record

// k: The key for the record being inserted.

// e: The record being inserted.

virtual void insert (const Keyé& k, const E& e) = 0;

// Remove and return a record.

// k: The key of the record to be removed.

// Return: A maching record. If multiple records match

// "k", remove an arbitrary one. Return NULL if no record
// with key "k" exists.

virtual E remove (const Key& k) = 0;

// Remove and return an arbitrary record from dictionary.
// Return: The record removed, or NULL if none exists.
virtual E removeAny () = O0;

// Return: A record matching "k" (NULL if none exists).
// If multiple records match, return an arbitrary one.
// k: The key of the record to find

virtual E find(const Key& k) const = 0;

// Return the number of records in the dictionary.
virtual int size() = O;

}:

(@ CS311, Hao Wang, SCU 61

tot i



Summary

The definition of the queue operations
gives the ADT queue first-in, first-out
(FIFO) behavior

The queue can be implemented by linked
lists or by arrays

There are many applications
Printer queues,
Telecommunication queues,

Simulations,
Etc.

@ CS311, Hao Wang, SCU



Conclusions

Array-based lists

Fast random access
Insertion and removal take long time

Linked lists

Slow for random access
Fast insertion and removal

Singled and doubly linked list
The notion of curr

Add head and/or tail nodes for convenient coding
Pay attention to special cases

(@ CS311, Hao Wang, SCU 63



Conclusions (cont'd)

Stacks (LIFO, last-in first-out)

Two implementations
array-based and linked stacks

Fast operation with time complexity: ©(1)

Queues (FIFO, first-in first-out)

Three implementations
Array-based, circular, and linked queue

Fast operation with time complexity: ©(1)
Wide applications of stacks and queues

@ CS311, Hao Wang, SCU



Homework 2

See course webpage
Deadline: 11:59pm, Oct. 11, 2024
Submit to: cs scu@foxmail.com

File name format:
CS311_Hw2 yourlD yourLastName.doc (or pdf)

(@ CS311, Hao Wang, SCU 65


mailto:cs_scu@foxmail.com

