Data Structures and

Algorithms

Lecture 5: Lists, Stacks, and Queues (ll)
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. An application of lists -- merge sort
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Merge Sort

If there is only one number in the list, return;

Split a list into two sub-lists with almost equal
length

Recursively sort the two sub-lists, where the
numbers in each sub-lists are in increasing
order

Merge the two sub-lists into one list such that
the number the merged list are in increasing
order

@ CS311, Hao Wang, SCU



‘ How to merge two sorted linked-lists?
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Merge two sorted linked-lists

/**

* Definition for singly-linked list.

*

*

* %k ok o ok

struct ListNode {
int val;
ListNode *next;

ListNode() : val(0), next(nullptr) {}
ListNode (int x) : val(x), next(nullptr) ({}

ListNode (int x, ListNode *next)

: val (x) , next(next) {}
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Merge two sorted linked-lists

/** Recursion Method */
class Solution{
public:
ListNote* mergeTwolLists (ListNode* 11, ListNote* 12) ({
if('11){ // 11 is NULL
return 12;
} else if('12) { // 12 is NULL
return 11;
} else if(ll->val < 12->val) {
11->next = mergeTwoLists (1l1->next, 12);
return 11;
} else { // 1ll1->val >= 12->val
12->next = mergeTwoLists (11, 12->next);
return 12;
}
}
}:
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Recursion Method

Function

( [2, [I1is NULL

[1, [2 is NULL
merge(l1 — next, [2), if 1 >wval<I2- val
merge(l1,12 — next), if 1 ->val =12 - val

merge(l1,[2) = <

\

Complexity:
- Time: O(n+m)
- Space: O(n+m)
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Merge two sorted sub-lists

/** Iteration Method */
class Solution{
public:
ListNote* mergeTwolLists (ListNode* 11, ListNote* 12) ({
ListNote* tem = new ListNode (0) ;
ListNode* ans = tem;
while (11'=NULL && 12'=NULL)
{ 1f (11->val < 12->val)
{ tem->next = 11; 11
else
{ tem->next

11->next; }

12; 12 12->next; }

}

if (11'=NULL) tem—>next
if (12'=NULL) tem—>next
return ans->next;

}

11;
12;

};
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Iteration Method

Algorithm steps
Initialize two lists tem, ans;

Iteratively merge two nodes;
Merge the small one, and move pointer forward

Merge tail the last non-NULL list;
Return the result.

Complexity:
- Time: O(n+m)
- Space: O(1)

(@ CS311, Hao Wang, SCU



How to merge k sorted sub-lists?

Merge k sorted linked lists and return it as one
sorted list. Analyze and describe its complexity.

Example:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[

1->4->5,

1->3->4,

2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6

(@ CS311, Hao Wang, SCU



Stacks
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What 1s a Stack?

A stack is a list with the restriction that
iInsertions and deletions can be performed in
only one position, namely, the end of the list,
called the top.

Operations: PUSH (insert) and POP (delete)

Top

QN | || W
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Stacks
= LIFQO: Last In, First Out
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Stacks

Notation:
Insert;: PUSH

Remove: POP
The accessible element is called TOP.

Restricted form of list: Insert and remove only
at front of list.
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Stack ADT

// Stack abstract class
template <typename E> class Stack {
public:

void clear () ;

/** Push an element onto the top of the stack.
@param it Element being pushed onto the stack.*/
void push (E& 1t);

/** Remove and return top element.
@return The element at the top of the stack.*/

E pop ()’

/** @return A copy of the top element. */
E topValue () ;

/** @return Number of elements in the stack. */
public int length() ;
Y
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Stack ADT Interface

The main functions in the Stack ADT are (S 1s the stack)

boolean isEmpty();
boolean isFull(S);
void push(S, item);
void pop(S);

void clear(S);

ltem top(S);

ltem topAndPop(S);

I/ return true if empty

I return true if full

/l insert item into stack

// remove most recent item

// remove all items from stack
/I retrieve most recent item

/] return & remove most recent item
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Sample Operation

m) Stack S = malloc(sizeof (stack)):;

== cush (S, “a”);

=) push (S, “b”); S

-push(S, “c”) ; d

=) d=top (S) ;

mm) POP (S) ;

== push (S, “e”);

mm) POP (S) ;
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Implementation of Stacks

= Array-based stacks

= Linked stacks

Last element

Stack implemented using an array

First element

.

~ Empty slots

Top of stack

push l

I pop

Stack implemented using a linked list

Bottom of stack

o
o
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Array-Based Stacks

// Array-based stack implementation

private:
int maxSize; // Maximum size of stack
int top; // Index for top element

E *listArray; // Array holding elements

Questions:
Which end is the top of the stack?
Array[0] is the bottom and array[top-1] is the top
Where does "top" point to?
Array index for the top element currently in the stack.

What is the cost of the operations?
®(1) for each push or pop operation.
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Implementation by Array

Use Array with a top index pointer as an implementation of stack

StackAr
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Code

void clear (STACK *pS)

{
pS—->top = -1;
typedef struct { }
int A[MAX];
int top: BOOLEAN isEmpty(STACK #*pS)
} STACK; {
return (pS->top < 0);
}
BOOLEAN isFull (STACK *pS)
{
return (pS->top >= MAX-1);
}
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More code

BOOLEAN pop(STACK *pS, int *px)
{
if (isEmpty(pS))
return FALSE;
else {
(*px) = pS—>A[(pS->top)—1;
return TRUE;
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More code

BOOLEAN push(int x, STACK *pS)
{
if (isFull(pS))
return FALSE;
else {
pS->A[++(pS->top)] = x;
return TRUE;
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Linked Stacks

// Linked stack implementation

private:
int size; // Number of elements

Link<E>* top; // Pointer to first element

Push/PoP operations

Elements are 1nserted and removed only
from the head of the 1list.

Which end is the top of the stack?

Linked list head
Where does "top" point to?

The new/next link node for stores the top nodes
What is the cost of the operations?

O(1)
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Implementation by Linked Lists

Can use a Linked List as implementation of stack

StackLL

Top of Stack = Front of Linked-List

LinkedListltr
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Code

struct Node {
int element;
Node * next;
¥
typedef struct Node * STACK;

void clear (STACK *pS)
{

(*pS) = NULL;
¥

BOOLEAN isEmpty(STACK *pS)

{
return ((*pS) == NULL);

}

BOOLEAN isFull(STACK *pS)

{
return FALSE;

¥
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More code

BOOLEAN pop(STACK #pS, int *px)

{
if ((*pS) == NULL)
return FALSE;
else {
(*px) = (*pS)->element;
(*pS) = (*pS)->next;
return TRUE;
I
¥
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More Code

BOOLEAN push(int x, STACK #pS)

{
STACK newCell,;
newCell = (STACK) malloc(sizeof (struct CELL));
newCell->element = X;
newCell->next = (*pS);
(¥pS) = newCell;
return TRUE;
}
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Effects of Linked Stacks

L —w a| ——m b | ——m c | ®
(a) List L.
L —e — = — = b — -

(b) After executing push(x, L).

L —={ b — - | ®

(c) After executing pop(L,zx) on list L of (a).
/
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Array-based »s Linked Stacks

Time comparison
Operations for both two stacks take constant time.

Space comparasion

Array-based stack has an initially fixed-size array.

Linked stack can shrink and grow but requires
the overhead of a link field for every element.
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Applications of Stacks

Many application areas use stacks:
line editing
bracket matching
postfix calculation
function call stack

(@ CS311, Hao Wang, SCU
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Line Editing

A line editor would place characters read into a
buffer but may use a backspace symbol (denoted by
<—) to do error correction

Refined Task

read 1n a line
correct the errors via backspace

print the corrected line 1n reverse

Input :|abc defgl«2klp{X<«<«wxyz

Corrected Input  : |abc defg2klpwxyz

Reversed Output : | zyxwplk2gfed cba

@ CS311, Hao Wang, SCU 31



The Procedure

Initialize a new stack

For each character read:
if it is a backspace, pop out last char
entered
if not a backspace, push the char into

stack
To print in reverse, pop out each char

for output
IHHHN

Input : fgheree«yz

Corrected Input fyz

Reversed Output : | zyE

Stack

(@ CS311, Hao Wang, SCU

32



Bracket Matching Problem

Ensures that pairs of brackets are properly matched

* An Example: {a, (b+f[4])*3,d+f[5]}

» Bad Examples:
(..)..) // too many closing brackets
(..(..) // too many open brackets
[..(..]..) // mismatched brackets
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Informal Procedure

Initialize the stack to empty
For every char read
if open bracket then push onto stack

if close bracket, then
return & remove most recent item
from the stack
if doesn’t match then flag error

if non-bracket, skip the char read

Stack
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Postfix Calculator

Computation of arithmetic expressions can be efficiently
carried out in Postfix notation with the help of a stack.

Infix - arg1 op arg2
Prefix - op arg1 arg2
Postfix - arg1 arg2 op
postfix
2 3 * 4 +

(2*3) +4

infix /

2*3+4

\ 2 3 4 + *

2% (3+4)
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Informal Procedure

Initialize stack S
For each item read.
If it is an operand,
push onto the stack
If it is an operator,
pop arguments from stack;
perform operation:;
push result onto the stack

Expr

2 push (S, 2)
3 push (S, 3)
A push (S, 4)
_|_

arg2=topAndPop (S)
argl=topAndPop (S)
push (S, argl+arg2?)
. arg2=topAndPop (S)
argl=topAndPop (S)
push (S, argl*arg2)

Stack

@ CS311, Hao Wang, SCU
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Summary

The ADT stack operations have a last-in,
first-out (LIFO) behavior.

Stack can be implemented using array-
based or linked lists.

Stack has many applications

algorithms that operate on algebraic
expressions

a strong relationship between recursion and
stacks exists.
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Queues
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What 1s a Queue?

Like stacks, queues are lists. With a queue,
however, insertion is done at one end whereas
deletion is done at the other end.
Queues implement the FIFO (first-in first-out)
policy. E.g., a printer/job queue!
Two basic operations of queues:
dequeue: remove an item/element from front
engueue: add an item/element at the back

dequeue «— [—— enqueue

(@ CS311, Hao Wang, SCU
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Queue ADT

Queues implement the FIFO (first-in first-out) policy
An example 1s the printer/job queue!

enqueue(o)

dequeue()

isEmpty()
getFront() createQueue()
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Sample Operation

=) Queue *Q;

mm) cnqueue (Q, “a”); q

mm) enqueue (Q, “b”);

\

i
.

mm) enqueue (Q, “c”);

mm) d=getFront (Q) ;

front
mm) dequeue (Q) ;

l l back
mm) cnqueue (Q, “e”); © €

mm) dequeue (Q) ;
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Queue ADT interface

The main functions in the Queue ADT are (Q 1s the
queue)

void enqueue (it, Q) // insert it to back of Q
void dequeue (Q); // remove oldest item

ITtem getFront(Q); // retrieve oldest item
boolean isEmpty (Q);// checks if Q is empty
boolean isFull(Q);// checks if Q is full

void clear (Q);// make Q empty

(@ CS311, Hao Wang, SCU
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Implementation ot Queues

Array-based queue
Circular queue
Linked queue
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Array-based Queue

Use Array with front and back/rear pointers as
implementation of queue

Queue

.back/rear
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Array-based Queue

The queue drift’ towards to the end of the
array

Cannot enqueue when rear = (maxSize-1),
even If there are some space left

30| 5 |15|25

(@ CS311, Hao Wang, SCU
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Circular Queue

To implement queue, it is best to view arrays as circular structure

0 I 3 4 5 6 7 8 9

A|B| C| D| E| F

T
\\\\\\back

front
9 front
Circular view of arrays,
bacg
\ 2
7
G
F
6
5 4
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How to Advance

Both front & back pointers should make advancement until they
reach end of the array. Then, they should re-point to beginning of
the array

adv (front) ;
adv (back) ;

front
back

int adv(int p) Alternatively, use modular arithmetic:

{ int r = p+1; int adv(int p)

if (r<maxsize) return r; { return ((p+l) % maxsize);

else refiurn O;
’ }
ey /
/

upper bound of the array mod operator
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Circular Queue-cont.

Enqueue
rear = (real+1)%maxSize;
Place the new element at the array with index rear

Dequeue

Serve the first element in the queue, i.e., array[front]
front=(front+1)%maxSize;

Initially

front = 0, rear = maxSize-1;
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Ettects of Circular Queue

The position of the element next to the i-th element

is (i+1)%maxSize.

Length=(rear+size-front+l) SmaxSize
where % is the modulus operator.

front
front

4
&

4

rear

() (b)
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Queue *Q;
enqueue (Q,
enqueue (Q,
enqueue (Q,
dequeue (Q) ;
dequeue (Q) ;
enqueue (Q,

enqueue (Q,

11181111l

dequeue (Q) ;

A\ 144

\\b//

A\ 144

\\d//

A\ 144

) ;
) ;
) ;

) ;
) ;

Sample

F=front
B=back

mmm| T

@ CS311, Hao Wang, SCU
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7 front 6 7  front

rear
6 6
front
5/°\ R VAN éo 5/°\ ﬁ’o/
N
B/
4 1 4 J1 4 VA
32 3

a
Emntv auene A enamnene R. (" enanene

empty queue : (rear +1)% maxSize = front
6
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F
S 0 5 0
4 1
/C 2. 4 C D 1
rear 3\1}0 ot 3 ‘1}0%1 ( rear
Enqueue D.E,F,G,H,I,J

Full queue : (rear+1)% maxSize = front

Cannot distinguish an empty queue and a full queue !
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An empty or a full queue?

Solution 1: count how many elements in the
queue

Empty queue if and only if the value of the
counteris O

Full queue iff the value of the counter is equal to

the size of the array
Solution 2: allocate an array with one more
space for storing no more than n elements,
l.e., the size of the array is n+1

The textbook adopts this solution.
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Checking for Full/Empty State

What does (F==B) denote?

Queue el 9 Queue
Empty F F Full
Stat Stat
ate B B ate
size 0 size 4

Alternative - Leave a Deliberate Gap!

No need for size field.

Full Case : (adv (B) ==F) B F
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Linked Queue

Can use Linked Lists as underlying implementation of Queues

Queue

1lst

LinkedList
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struct Node {
int element;
Node * next;

55

struct QUEUE {
Node * front;
Node * rear;

55

Code

void clear (QUEUE *pQ)

{

pQ->front = NULL;
}
BOOLEAN isEmpty(QUEUE *pQ)
{

return (pQ->front == NULL);
}
BOOLEAN isFull (QUEUE *pQ)
{

return FALSE;
}

(@ CS311, Hao Wang, SCU
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More code

BOOLEAN dequeue(QUEUE *p(Q, int #*px)

{
if (isEmpty(pQ))
return FALSE;
else {
(*px) = pQ->front->element;
plQ->front = pQ->front->next;
return TRUE;
I
}

@ CS311, Hao Wang, SCU
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More code

BOOLEAN enqueue(int x, QUEUE *pQ)

{
if (isEmpty(pQ)) {
pQ->front = (LIST) malloc(sizeof (struct CELL));
pQ->rear = pQ->front;
¥
else {
pRQ->rear->next = (LIST) malloc(sizeof (struct CELL));
pQ->rear = pl->rear->next;
¥
pl->rear->element = X;
pl->rear->next = NULL;
return TRUE;
¥ CELL 1s a list node
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Application of Queue(1)- Butter

Low speed devices

Queues for data buffer

High speed processor

(@ CS311, Hao Wang, SCU
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Application of Queue(2)- Message Queue

Asynchronous collaboration between different
components.

E.g., message queue in Windows OS.

Message consumer Message producer

\dequeue /mueue
60
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Dictionaries

// The Dictionary abstract class.
template <typename Key, typename E>
class Dictionary ({

private:
- void operator =(const Dictionaryé&) {}
= A key-value pair Dietsorary (const Bicxioneeyer O
public:
Dictionary () {} // Default constructor

virtual “Dictionary() {} // Base destructor

// Reinitialize dictionary
virtual void clear() = 0;

// Insert a record

// k: The key for the record being inserted.

// e: The record being inserted.

virtual void insert (const Keyé& k, const E& e) = 0;

// Remove and return a record.

// k: The key of the record to be removed.

// Return: A maching record. If multiple records match

// "k", remove an arbitrary one. Return NULL if no record
// with key "k" exists.

virtual E remove (const Key& k) = 0;

// Remove and return an arbitrary record from dictionary.
// Return: The record removed, or NULL if none exists.
virtual E removeAny () = O0;

// Return: A record matching "k" (NULL if none exists).
// If multiple records match, return an arbitrary one.
// k: The key of the record to find

virtual E find(const Key& k) const = 0;

// Return the number of records in the dictionary.
virtual int size() = O;

}:

(@ CS311, Hao Wang, SCU 61

tot i



Summary

The definition of the queue operations
gives the ADT queue first-in, first-out
(FIFO) behavior

The queue can be implemented by linked
lists or by arrays

There are many applications
Printer queues,
Telecommunication queues,

Simulations,
Etc.
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Conclusions

Array-based lists

Fast random access
Insertion and removal take long time

Linked lists

Slow for random access
Fast insertion and removal

Singled and doubly linked list
The notion of curr

Add head and/or tail nodes for convenient coding
Pay attention to special cases
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Conclusions (cont'd)

Stacks (LIFO, last-in first-out)

Two implementations
array-based and linked stacks

Fast operation with time complexity: ©(1)

Queues (FIFO, first-in first-out)

Three implementations
Array-based, circular, and linked queue

Fast operation with time complexity: ©(1)
Wide applications of stacks and queues

@ CS311, Hao Wang, SCU



Homework 2

See course webpage
Deadline: 11:59pm, Oct. 11, 2024
Submit to: cs scu@foxmail.com

File name format:
CS311_Hw2 yourlD yourLastName.doc (or pdf)
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