
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 6: C++ Programming

@ CS311, Hao Wang, SCU

Very brief history of C++

For details more check out A History of C++: 1979−1991

C

Simula 67

C++

1

http://www.stroustrup.com/hopl2.pdf

@ CS311, Hao Wang, SCU

Brief Facts about C++

§ Evolved from C
§ Early 1980s: Bjarne Stroustrup (Bell Labs)
§ Provides capabilities for Object-Oriented

Programming (OOP)
q Objects: resuable software components

� Model items in real world
q Object-oriented programs

� Easy to understand, correct and modify

§ C++ is a superset of C.
§ Nowadays a language of its own!

2

@ CS311, Hao Wang, SCU

Procedural-Oriented VS. Object-Oriented
Procedural-Oriented Program

main

data function-1
(procedure)

data

function-2
(procedure)

data

function-3
(procedure)

data

Object-Oriented Program

Object-1
data-1+functions

Object-2

Object-3
Object-n

data-2+functions

data-3+functions

data-4+functions

Modules interact by reading and writing
state that is store in shared data structures.

Modules in the form of objects interact
by sending messages to each other.

3

@ CS311, Hao Wang, SCU

Example: PO VS. OO

enginetires

steering
wheel accelerator brakes

accelerate

switch on the ignition

steer

brake
Car = a sequence of functions (procedures) Car = interaction between components (objects)

Procedure-oriented View
of car operation

Object-oriented View
of car operation

CAR

4

@ CS311, Hao Wang, SCU

The C++ Programming Model

SourceCode.cpp

Library Functions

Compiler

a.out

User

5

@ CS311, Hao Wang, SCU

The Compilation Process

6

@ CS311, Hao Wang, SCU

Programming tools/compiler

§ Windows
q Dev-C++: https://www.bloodshed.net/ (Easy to Go)
q VS Code:

https://code.visualstudio.com/docs/setup/windows

§ Mac OS
q VS Code:

https://code.visualstudio.com/docs/setup/mac
q Xcode: https://developer.apple.com/xcode/

7

https://www.bloodshed.net/
https://code.visualstudio.com/docs/setup/windows
https://code.visualstudio.com/docs/setup/mac
https://developer.apple.com/xcode/

@ CS311, Hao Wang, SCU

VS Code Setup Guide

§ Part One: Installed VSCode IDE successfully!
§ Part Two: Install a C++ Compiler

q Windows
� Follow the instructions at this link:

https://code.visualstudio.com/docs/cpp/config-mingw
q Mac OS

� Follow the instructions at this link:
https://code.visualstudio.com/docs/cpp/config-clang-mac

� or this: Step1. Install Homebrew https://brew.sh/, and
Step2. type "brew install gcc" in the terminal to install gcc.

8

https://code.visualstudio.com/docs/cpp/config-mingw
https://code.visualstudio.com/docs/cpp/config-clang-mac
https://brew.sh/

@ CS311, Hao Wang, SCU

Outline of Today's Lecture

§ Basic Features of C++
§ Class in C++
§ Scope, Namespace, Casting, Control Flow
§ Dynamic Memory Allocation
§ Overloading, Polymorphism, Inline Function
§ More on OOP and Class

q Constructor and Destructor
q Inheritance, Derivation, Overriding, Friend

§ Template: Function and Class
§ Exceptions
§ File I/O

9

@ CS311, Hao Wang, SCU

Basic features

10

@ CS311, Hao Wang, SCU

Basic C++

§ Inherit ALL C syntax
q Primitive data types

� Supported data types: int, long, short, float,
double, char, bool, and enum

� The size of data types is platform-dependent
q Basic expression syntax

� Defining the usual arithmetic and logical operations such as +,
-, /, %, *, &&, !, and ||

� Defining bit-wise operations, such as &, |, and ~
q Basic statement syntax

� If-else, for, while, and do-while

11

@ CS311, Hao Wang, SCU

Basic C++ (cont)

§ Add a new comment mark
q // For a single line comment
q /*… */ for a group of line comment

§ New data type
q Reference data type “&”. Much likes pointer.

int ix; // ix is "real" variable
int & rx = ix; // rx is "alias" for ix
ix = 1; /* also rx == 1 */
rx = 2; /* also ix == 2 */

§ const support for constant declaration, just likes C.

12

@ CS311, Hao Wang, SCU

Basics of a Typical C++ Program
Phases of C++ Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Editor

Preprocessor

Linker

CPU

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

Primary
Memory

.

.

.

.

.

.

13

@ CS311, Hao Wang, SCU

Main steps to create and run a C++ program

The steps are:
1. Create a new project.
2. Add a C++ source file to the project.
3. Enter your source code.
4. Include "lib_header_files.h" to the project.

(optional)
5. Build an executable file.
6. Execute the program.

14

@ CS311, Hao Wang, SCU

Example: A Simple C++ Program

§ The infamous Hello World program!

The main routine – the start of every C++
program! It returns an integer value to the
operating system and (in this case) takes
no arguments: main()

The return statement returns an integer value to the
operating system after completion. 0 means “no error”.
C++ programs must return an integer value.

15

@ CS311, Hao Wang, SCU

Example: A Simple C++ Program
Load headers; there are modules that
include functions that you may use in your
program; we will almost always need to
include the header that defines cin and
cout; the header is called <iostream.h>

Load a namespace called std.
Namespaces are used to separate
sections of code for programmer
convenience.

§ cout is the object that writes to the stdout device, i.e. the console
window. It is part of the C++ standard library.

§ << is the C++ insertion operator. It is used to pass characters
from the right to the object on the left.

§ endl is the C++ newline character.

16

@ CS311, Hao Wang, SCU

C++ Data Types

Basic Data Types

17

@ CS311, Hao Wang, SCU

Variable declaration

type variable-name;
Meaning: variable <variable-name> will be a variable of type <type>

Where type can be:
q int // integer
q double // real number
q char // character

Example:
int a, b, c;
double x;
int sum;
char my-character;

18

@ CS311, Hao Wang, SCU

String
q C-style strings are implemented as an array of

characters that ends with the null-character '\0'.
q C++ provides a string type as part of its "Standard

Template Library" (STL).
� Should include the header file "<string>"
� STL: Collection of useful, standard classes and libraries in C++

q Full name of string type is "std::string"

#include <string>

using std::string;
string s = “to be”;
string t = “not ” + s; // t = “not to be”
string u = s + “ or ” + t; // u = “to be or not to be”
if (s > t) // true: “to be” > “not to be”

cout << u; // outputs “to be or not to be”

// Concatenated using + operator
// Output using << operator

19

@ CS311, Hao Wang, SCU

References

§ An alternative name for an object (i.e., alias)
§ The syntax "&" denotes a reference to an object
§ It stores the memory location of other object.
§ Cannot be NULL.
§ Example:

string author = “Samuel Clemens”;

string &penName = author; // penName is an alias for author
penName = “Mark Twain”; // now author = “Mark Twain”
cout << author; // outputs “Mark Twain”

20

@ CS311, Hao Wang, SCU

Constants
§ Adding the keyword const to a declaration
§ The value of the associated object cannot be

changed
§ ex)

§ Replace “#define” in C for the definition of
constants

const double PI = 3.14159265;

const int CUT_OFF[] = {90, 80, 70, 60};
const int N_DAYS = 7;
const int N_HOURS = 24*N_DAYS; // using a constant expression
int counter[N_HOURS]; // constant used for array size

21

@ CS311, Hao Wang, SCU

Typedef

§ Define a new type name with keyword typedef
§ Example

typedef char* BufferPtr; // type BufferPtr is a pointer to char
typedef double Coordinate; // type Coordinate is a double

BufferPtr p; // p is a pointer to char
Coordinate x, y; // x and y are of type double

22

@ CS311, Hao Wang, SCU

Input statements

cin >> variable-name;
Meaning: read the value of the variable called <variable-

name> from the user

Example:
cin >> a;
cin >> b >> c;

cin >> x;
cin >> my-character;

23

@ CS311, Hao Wang, SCU

Output statements

cout << variable-name;
Meaning: print the value of variable <variable-name> to the user

cout << "any message ";
Meaning: print the message within quotes to the user

cout << endl;
Meaning: print a new line

Example:
cout << a;
cout << b << c;
cout << “This is my character: “ << my-character << “ etc.”
<< endl;

24

@ CS311, Hao Wang, SCU

Functions

§ functions are abstractions
that help you to reuse ideas
and codes
q make the code clearer, more

logical and comprehensible

25

@ CS311, Hao Wang, SCU

Functions

§ function prototyping: a description of the
types of arguments when declaring and
defining a function
q void funct(float x, float y, float z);

q or having no arguments, void funct(void)

26

@ CS311, Hao Wang, SCU

Example: Functions

§ Return values
§ Example à

27

@ CS311, Hao Wang, SCU

Parameter Passing

§ Different ways to pass parameters into a
function
q Pass-by-value
q Pass-by-address
q Pass-by reference

§ Parameters are passed by value to a function
q a copy of the parameters, and does NOT affect

outside the function.

28

@ CS311, Hao Wang, SCU

Pass-by-value

29

@ CS311, Hao Wang, SCU

Pass-by-address

§ A pointer is passed instead of a value.
§ Pointer acts as an alias to an outside object.
§ Any changes to the alias in the function

DOES affect “outside” object.

30

@ CS311, Hao Wang, SCU

Pass-by-address

31

@ CS311, Hao Wang, SCU

Pass-by-reference

§ C++ provide another way to pass an address
into a function – reference

§ Similar to pass-by-address
§ Any changes to the objects in the function

DOES affect "outside" objects.
§ Note, Pass-by-constant-reference will NOT

allow change the objects inside the function.

32

@ CS311, Hao Wang, SCU

Pass-by-reference

33

@ CS311, Hao Wang, SCU

Class in C++

34

@ CS311, Hao Wang, SCU

Class

§ A tool for creating new types
§ Conveniently used as if the built-in type, but

user-defined
§ Derived classes and templates – related

classes are organized in a specific way
according to their relationships

§ Note: Class is an abstraction of a group of
objects, while an object is an instance of the
class

35

@ CS311, Hao Wang, SCU

Class

36

@ CS311, Hao Wang, SCU

Example: Class Definitions

§ A C++ class consists of data members and methods
(member functions).

class IntCell
{

public:
explicit IntCell(int initialValue = 0)

: storedValue(initialValue) {}

int read() const
{ return storedValue;}

void write(int x)
{ storedValue = x; }

private:
int storedValue;

}

Member functions

Data member(s)

Indicates that the member’s invocation does
not change any of the data members.

Avoid implicit type conversion
Initializer list: used to initialize the data
members directly.

37

@ CS311, Hao Wang, SCU

Class - Encapsulation

§ Two labels: public and private
q Determine visibility of class members
q A member that is public may be accessed by any method in

any class
q A member that is private may only be accessed by

methods in its class

§ Information hiding
q Data members are declared private, thus restricting access

to internal details of the class
q Methods intended for general use are made public

38

@ CS311, Hao Wang, SCU

Class - Interface and Implementation

§ In C++, it is more common to separate the class
interface from its implementation.

§ The interface lists the class and its members (data and
functions).

§ The implementation provides implementations of the
functions.

39

@ CS311, Hao Wang, SCU

Class – Member Functions

§ Functions declared within a class definition
§ Invoked only for a specific variable of the

appropriate type

40

@ CS311, Hao Wang, SCU

Class – Constructor

§ A special function for the initialization of class
objects

§ It has the same name as the class itself
§ Default or user-defined constructors

41

@ CS311, Hao Wang, SCU

Class - Constructor

Constructors

42

@ CS311, Hao Wang, SCU

Class – Access Control

§ Three keywords/categories: public,
private, and protected

§ public means all member declarations that
follow are available to everyone

§ The private keyword, means that no one can
access that member except designer, the
creator of the type, inside function members
of that type

43

@ CS311, Hao Wang, SCU

Class – Access Control

§ Protected acts just like Private, except that it
allow the inherited class to gain access.

§ Example
class X {
public:

void interfaceFunc();
protected:

void protectedFunc();
private:

void privateFunc();
};

44

@ CS311, Hao Wang, SCU

Scope, Namespace, Casting,
Control Flow

45

@ CS311, Hao Wang, SCU

Local and Global Variables

§ Block
q Enclosed statements in {...} define a block
q Can be nested within other block

§ Local variables are declared within a block and
are only accessible from within the block

§ Global variables are declared outside of any
block and are accessible from everywhere

§ Local variable hides any global variables of the
same name

46

@ CS311, Hao Wang, SCU

Local and Global Variables

§ ex)

const int cat = 1; // global cat

int main () {

const int cat = 2; // this cat is local to main

cout << cat; // outputs 2 (local cat)

return EXIT_SUCCESS;

}

int dog = cat; // dog = 1 (from the global cat)

47

@ CS311, Hao Wang, SCU

Scope Resolution Operator (::)
#include <iostream>
using namespace std;

int x;

int main()
{

int x;
x = 1;
::x = 2;

cout << "local x = " << x << endl;
cout << "global x = " << ::x << endl;

return 0;
}

local x hides global x

assign to global x

result>
local x = 1
global x = 2

48

@ CS311, Hao Wang, SCU

Namespaces: Motivation
§ Two companies A and B are working together to build a game

software "Snake"

§ A uses a global variable
q struct Tree {};

§ B uses a global variable
q int Tree;

§ Compile? Failure!
§ Solution

q A: struct Atree {}; B: int BTree; à dirty, time consuming, inconvenient

§ Let’s define some “name space”
§ Very convenient in making “large” software

49

@ CS311, Hao Wang, SCU

Namespaces

§ A mechanism that allows a group of related
names to be defined in one place

§ Access an object x in namespace group using
the notation group::x, which is called its fully
qualified name

§ ex)
namespace myglobals {

int cat;

string dog = “bow wow”;

}

myglobals::cat = 1;

50

@ CS311, Hao Wang, SCU

The Using Statement

§ Using statement makes some or all of the
names from the namespace accessible, without
explicitly providing the specifier

§ ex)

using std::string; // makes just std::string accessible

using std::cout; // makes just std::cout accessible

using namespace myglobals; // makes all of myglobals accessible

51

@ CS311, Hao Wang, SCU

#include <iostream>
namespace IntSpace{

int data;
void add(int n){ data += n; }
void print(){ std::cout << data << std::endl; }

}
namespace DoubleSpace{

double data;
void add(double n){ data += n; }
void print(){ std::cout << data << std::endl; }

}
int main()
{

IntSpace::data = 3;
DoubleSpace::data = 2.5;
IntSpace::add(2);
DoubleSpace::add(3.2);
IntSpace::print();
DoubleSpace::print();
return 0;

}

Example: Namespace

same variable name is allowed
in different namespaces

result>
5
5.7

52

@ CS311, Hao Wang, SCU

Type Casting

int cat = 14;

double dog = (double) cat; // traditional C-style cast
double pig = double(cat); // C++ functional cast

int i1 = 18;

int i2 = 16;

doubled v1 = i1 / i2; // dv1 = 1.0
doubled v2 = double(i1) / double(i2); // dv2 = 1.125
doubled v3 = double(i1 / i2); // dv3 = 1.0

53

@ CS311, Hao Wang, SCU

Static Casting (to give “warning”)

double d1 = 3.2;

double d2 = 3.9999;

int i1 = static_cast<int>(d1); // i1 = 3
int i2 = static_cast<int>(d2); // i2 = 3

54

@ CS311, Hao Wang, SCU

Implicit Casting

int i = 3;

double d = 4.8;

double d3 = i / d; // d3 = 0.625 = double(i) / d
int i3 = d3; // i3 = 0 = int(d3)

// Warning! Assignment may lose information

55

@ CS311, Hao Wang, SCU

Control Flow: If statement

if (condition) {
S1;

}
else {

S2;
}
S3;

condition

S1 S2

S3

True False

56

@ CS311, Hao Wang, SCU

Control Flow: Boolean conditions

§ Comparison operators
== equal
!= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

§ Boolean operators
&& and
|| or
! not

57

@ CS311, Hao Wang, SCU

Control Flow: Condition Examples

Assume we declared the following variables:
int a = 2, b=5, c=10;

Here are some examples of boolean conditions we can
use:

§ if (a == b) …

§ if (a != b) …
§ if (a <= b+c) …

§ if(a <= b) && (b <= c) …
§ if !((a < b) && (b<c)) …

58

@ CS311, Hao Wang, SCU

Control Flow: If example
#include <iostream.h>

void main() {
int a,b,c;
cin >> a >> b >> c;

if (a <=b) {
cout << “min is “ << a << endl;
}

else {
cout << “ min is “ << b << endl;

}
cout << “happy now?” << endl;
}

59

@ CS311, Hao Wang, SCU

Control Flow: While statement

while (condition) {
S1;

}
S2;

condition

S1

S2

True False

60

@ CS311, Hao Wang, SCU

Control Flow: While example

//read 100 numbers from the user and output their sum
#include <iostream.h>

void main() {
int i, sum, x;
sum=0;
i=1;
while (i <= 100) {

cin >> x;
sum = sum + x;
i = i+1;

}
cout << “sum is “ << sum << endl;
}

61

@ CS311, Hao Wang, SCU

More Control Flows
§ Do-While statement

§ Switch statement

§ For loop
for ([<initialization>]; [<condition_exp>]; [<increment>])

<body_statement>

switch (command){
case '1': {};
case '2': {};
...

}

do {
loop_body_statement

}
while (<condition_exp>)

62

@ CS311, Hao Wang, SCU

Dynamic Memory Allocation

63

@ CS311, Hao Wang, SCU

Memory Allocation

§ Stack memory allocation
q e.g., Non-static local variables
q Such memory allocations are placed in a system

memory area called the stack.

§ Static memory allocation
q e.g., static local or global variables
q Static memory allocation happens before the program

starts, and persists through the entire life time of the
program.

64

@ CS311, Hao Wang, SCU

Memory Allocation

§ Dynamic memory allocation
q It allows the program determine how much

memory it needs at run time, and allocate exactly
the right amount of storage.

§ Note: the program has the responsibility to
free the dynamic memory it allocated.

65

@ CS311, Hao Wang, SCU

Dynamic Memory Allocation

§ Create objects dynamically in the 'free store'.

§ The operator 'new' dynamically allocates the
memory from the free store and returns a
pointer to this object.

§ The operator 'delete' destorys the object
and returns its space to the free store.

66

@ CS311, Hao Wang, SCU

Dynamic Memory Allocation

§ Example

Passenger *p;

//...

p = new Passenger; // p points to the new Passenger

p->name = “Pocahontas”; // set the structure members

p->mealPref = REGULAR;

p->isFreqFlyer = false;

p->freqFlyerNo = “NONE”;

//...

delete p; // destroy the object p points

67

@ CS311, Hao Wang, SCU

Overloading, Polymorphism,
Inline Function

68

@ CS311, Hao Wang, SCU

Function Overloading

69

•#include<iostream>
•using namespace std;

•int abs(int n) {
• return n >= 0 ? n : -n;
•}

•double abs(double n) {
• return (n >= 0 ? n : -n);
•}

•int main() {
• cout << “absolute value of ” << -123;
• cout << “ = ” << abs(-123) << endl;
• cout << “absolute value of ” << -1.23;
• cout << “ = ” << abs(-1.23) << endl;
•}

In C, you can’t
use the same name for
different functions

C++ allows multiple
functions with the same
name: the right function
is determined at runtime
based on argument types

@ CS311, Hao Wang, SCU

Function Overloading

70

•#include<iostream>
•using namespace std;

•int abs(int n) {
• return n >= 0 ? n : -n;
•}

•double abs(double n) {
• return (n >= 0 ? n : -n);
•}

•int main() {
• cout << “absolute value of ” << -123;
• cout << “ = ” << abs(-123) << endl;
• cout << “absolute value of ” << -1.23;
• cout << “ = ” << abs(-1.23) << endl;
•}

In C, you can’t
use the same name for
multiple function definitions

C++ allows multiple
functions with the same
name as long as
argument types are
different: the right
function is determined at
runtime based on
argument types

Type matching

Type matching

@ CS311, Hao Wang, SCU

C++ Operator overloading

§ User can overload operators for a user-defined
class or types
q e.g., string s1(“ab”); string s2(“cd”); string s = s1+s2;
q define an operator as a function to overload an

existing one
q operator followed by an operator symbol to be defined.

� define an operator + ➔ operator+
� define an operator ++ ➔ operator++
� define an operator << ➔ operator <<

q To avoid confusion with built-in definition of overload
operators, all operands in the basic types (int, long,
float) are not allowed

71

@ CS311, Hao Wang, SCU

Example : Operator Overloading
int main()

{
Day d = tue;
cout << "current : ";
print(d);
for(int i = 0; i < 6; i++){

++d;
}

cout << "after 6 days : ";
print(d);
return 0;

}

use of overloaded operator

#include <iostream>

using namespace std;
enum Day { sun, mon, tue, wed, thu, fri,sat };

Day& operator++(Day& d)
{
return d = (sat == d) ? sun : Day(d+1);

}

void print(Day d){
switch(d){
case sun : cout << "sun\n"; break;
case mon : cout << "mon\n"; break;
case tue : cout << "tue\n"; break;
case wed : cout << "wed\n"; break;

case thu : cout << "thu\n"; break;
case fri : cout << "fri\n"; break;
case sat : cout << "sat\n"; break;
}

}

Operator overloading

Result >
current : tue
after 6 days : mon

72

@ CS311, Hao Wang, SCU

Polymorphism

§ Allow values of different data types to be handled using
a uniform interface.

§ One function name, various data types
q Function overloading

§ Merit
q improve code readability

§ Ex. C
abs () labs () fabs ()

int long int floating point

C++
abs ()

int long int floating point

73

@ CS311, Hao Wang, SCU

Inline Functions

74

C (Macro functions)

Side effect of
macro functions

No side effect

C++ (Inline functions)
#include <iostream>

using namespace std;

inline int square(int i) { return i*i; }
inline void pr(int i) { cout << "value = "
<< i << endl; }

main() {
int i = 1, j = 1, k;
k = square(i+1); pr(k);

k = 100/square(2); pr(k);
}

Function body is expanded at the point of
function call during compile-time.

Similar to macro function

#include <stdio.h>

#define square(i) i*i
#define square2(i) ((i)*(i))
#define pr(i) printf("value
= %d\n", (i))

main() {
int i = 1, j = 1, k;
k = square(i+1); pr(k);
k = square2(j+1); pr(k);

k = 100/square(2); pr(k);
k = 100/square2(2); pr(k);

}

i+1*i+1

100/2*2
wrong answer
value = 4
value = 100 // wrong answer
value = 25

Result >
value = 4
value = 25

@ CS311, Hao Wang, SCU

More on OOP and Class

75

@ CS311, Hao Wang, SCU

More on OOP and Class

-- Constructor and Destructor

76

@ CS311, Hao Wang, SCU

Class Structure in General Form

methods(operations) à member functions
operation 1:
operation 2:

operation n:

operation 1’:
operation 2’:

operation n’:

operation 1’

operation 2’

operation n’ private: internal implementation
public methods can use these operations

public: external interface for client (user)

data (variables) à member variables

visibility
(scope)

accessibility
(security)

default

instance var
(local in an object instance)

class var
(global in objects in a class)

private
(not accessible from client)

public
(accessible from client)

instance or class
methods

Superclass(es)
for inheritance

77

@ CS311, Hao Wang, SCU

Constructors

§ A constructor is a special method that describes how
an instance of the class (called object) is constructed.
q which will be called whenever an instance of the class is created.

§ C++ provides a default constructor for each class.
q The default constructor has no parameters.

§ But we can define multiple constructors w/o parameters
for the same class, and may even redefine the default
constructor.

78

@ CS311, Hao Wang, SCU

Default Constructor with No
Argument

class record {
public:

char name[MAX];
private:

int course1, course2;
double avg;

public:
record ();

void print(void);
};

Default Constructor

always in “public” to be used by
all users for this class must not specify a return type

same name as class

79

@ CS311, Hao Wang, SCU

void record::print(void) { … }

int main() {
record myRecord;
record yourRecord = record("KIM", 80,

100);
record hisRecord("LEE", 70);

myRecord.print();
yourRecord.print();
hisRecord.print();

return 0;
}

Constructors with Arguments
#include<iostream>
using namespace std;
#define MAX 10

class record {
public:
char name[MAX];

private:
int course1,

course2;
double avg;

public:
record();
record(char*, int);
record(char*, int,

int);
void print(void);

};

overloading

shorthand notation
same as
record hisRecord = record(“LEE”, 70);

record::record() {
strcpy(name, "");
course1 = course2 = 100;
avg = 100;

}

record::record(char *str, int score) {
strcpy(name, str);
course1 = course2 = score;
avg = score;

}

record::record(char *str, int score1, int
score2) {
strcpy(name, str);
course1 = score1; course2 = score2;
avg = ((double) (course1 + course2)) / 2.0;

}

80

@ CS311, Hao Wang, SCU

Destructor

§ A destructor is called whenever an object goes out of
scope or is subjected to a delete.
q Typically, the destructor is used to free up any resources that

were allocated during the use of the object.

§ C++ provides a default destructor for each class
q The default simply applies the destructor on each data member.
q But we can redefine the destructor of a class.

§ A C++ class can have ONLY one destructor.

81

@ CS311, Hao Wang, SCU

Example: Destructors

class record {
public:
char name[MAX];

private:
int course1, course2;
double avg;

public:
record () { ... }
~record () {
...

}
void print(void);

};

Destructor

always in “public”

must not specify a return type

the tag name of the class
prefixed with a tilde (“~”)

int main() {
record myRecord;
…
return 0;

}
record::~record() invoked for myRecord

82

@ CS311, Hao Wang, SCU

More on OOP and Class

-- Inheritance, Derivation, Overriding,
Friend

83

@ CS311, Hao Wang, SCU

Recall: Class Declaration
class_name instance_name1, instance_name2;

C.f. struct tag_name struct_variable, … ;

instance_name1

instance_name2
class_name

instantiation

methods

variables

methods

variables

methods

variables

84

@ CS311, Hao Wang, SCU

Inheritance (1/2)
§ Subclassing: define a class based on another class

q Another class = parent class (or superclass)
q New class = child class (subclass)
q Hierarchical classification in a tree form
q Another way of ”polymorphism”

vehicle

ship planeland vehicle

car truck bus

• overrides information in superclass
• refines information in superclass to detailed one
• adds more information to one in superclass

Superclass à
subclass

85

@ CS311, Hao Wang, SCU

Inheritance (2/2)
§ Inheritance

q Inherits data (attributes) and operations (behaviors) from parent
q + own data and operations
q Increases reusability by inheritance

parent_class

child_class1 child_class2

data1
operation 1

data 2
operation 2

data 0

operation 0

Inheritance
for reuse

Inheritance for reuse

data 0
operation 0

data 0
operation 0

Super class

Sub classes

No eye

Eyes but
different

for each class

86

@ CS311, Hao Wang, SCU

Inheritance: Mechanism for Reuse
Person

name

telephone

address

…

Student
name

telephone

address

…

student ID

attendance

grade

…

Teacher
name

telephone

address

…

office

office hour

…

class Person {
char *name, *telephone, *address;
...

};

class Teacher : public Person {
char *office, *officeHour;
...

};

class Student : public Person {
int studentID, attendance;
char grade;
...

};

Base class
(Parent, Superclass)

Derived class
(Child, subclass)

Class derivationClass derivation

87

@ CS311, Hao Wang, SCU

Access to Base Classes
§ Access control of a base class

q public derivation
q private derivation
q protected derivation public:

protected:
private:

public: Any one

protected: D and D’s
subclass

private: B only
D’s own declaration

Class D : public B

public:
D

protected:
private: B only

D’s own declaration

Class D : private B
public:

D and D’s
subclassprotected:

private: B only
D’s own declaration

Class D : protected B

Class B

public derivation
private derivation

protected derivation

B’s public and protected
à D’s private

B’s public and protected
à D’s protected

B’s protected à D’s protected

88

@ CS311, Hao Wang, SCU

Public Derivation

class Person {
public:

char *name;
protected:

char *telephone;
private:

char *address;
};

class Student : public Person {
public:
int studentID;

private:
int attendance;
char grade;

};

public

derivation
Student

public

private

name

telephone

address

public

private

studentID

attendance

grade

protected

Person
public

private

name

telephone

address

protected

Person

inherit outside
Student

89

@ CS311, Hao Wang, SCU

Private Derivation

class Person {
public:

char *name;
protected:

char *telephone;
private:

char *address;
};

class Student : private Person {
public:
int studentID;

private:
int attendance;
char grade;

};

Student
public

private

name

telephone

address

public

private

studentID

attendance

grade

protected

private

derivation
Person

public

private

name

telephone

address

protected

Person

inherit outside
Student

90

@ CS311, Hao Wang, SCU

#include<iostream>
using namespace std;
class Parent {

char *_lastname;
public:

char *_name;
char* lastname() { return _lastname; }
char* name() { return _name; }
Parent(char *name = "",

char *lastname = "");
~Parent() { delete _name, _lastname; }

};

Parent::Parent(char *name, char *lastname) {
_name = new char[strlen(name)+1];
strcpy(_name, name);

_lastname = new
char[strlen(lastname)+1];

strcpy(_lastname, lastname);
}

class Child : public Parent {
public:
Child(char *name = "", char *lastname = "");

};

Child::Child(char *name, char *lastname) :
Parent(name, lastname)
{}

int main() {
Child myRecord("GivenName", "FamilyName");
cout << "Name : " << myRecord._name << endl;
cout << "Last name : " << myRecord._lastname() << endl;

return 0;
}

Name : GivenName
Last name : FamilyName

Example: Public Derivation

91

@ CS311, Hao Wang, SCU

Overriding: From Subclass to
Superclass

class Parent {
...

public:
void Work () { ... }
void Rest () { ... }

};

class Child : public Parent{
...

public:
void Work () { ... }
void Rest () { ... }

};

Parent
name

Work()

Rest()

Child
name

Work()

Rest()

Work()

Rest()

derivation

overriding

overriding

92

@ CS311, Hao Wang, SCU

Example: Overriding (1/2)
#include<iostream>
using namespace std;

class Parent {
public:
void print() {
cout << "I'm your father." << endl;

}
};

class Child : public Parent {
public:
void print() {
cout << "I'm your son." << endl;

}
};

overriding

int main() {
Child child;
child.print();
return 0;

}

result>
I'm your son.

93

@ CS311, Hao Wang, SCU

Example: Overriding (2/2)
#include<iostream>
using namespace std;

class Parent {
public:

void print() {
cout << "I'm your father." << endl;

}
};

class Child : public Parent {
public:

void print(int i = 1) {
for (int j = 0; j < i; j++)
cout << "I'm your son." << endl;

}
};

overriding

int main() {
Child child;
child.print();
child.print(3);
return 0;

}

result>
I'm your son.
I'm your son.
I'm your son.
I'm your son.

94

@ CS311, Hao Wang, SCU

Call Overridden Functions
#include<iostream>
using namespace std;

class Parent {
public:

void print() {
cout << "I'm your father." << endl;

}
};

class Child : public Parent {
public:

void print() {
cout << "I'm your son." << endl;

}
};

overriding

int main() {
Child child;
child.print();
child.Parent::print();
return 0;

}

result>
I'm your son.
I'm your father.

95

@ CS311, Hao Wang, SCU

Friends to a Class

§ In some cases, information-hiding is too prohibitive.
q Only public members of a class are accessible by non-members of the class

§ "friend" keyword
q To give nonmembers of a class access to the nonpublic members of the class

§ Friend
q Functions
q Classes

friend class BBB

class AAA

class CCC

can access nonpublic
members of class AAA

class BBB

I’m AAA’s friend!

I’m not AAA’s friend..
friend function aaa()

class AAA function aaa()

can access nonpublic
members of class AAA

96

@ CS311, Hao Wang, SCU

Example: Friend Functions

not member function,
but friend function

call-by-reference

not “p.set();”

#include<iostream>
using namespace std;

class point {
int x, y;

public:
point(int a = 0, int b = 0);
void print();

friend void set(point &pt, int a, int b);
};

point::point(int a, int b) {
x = a; y = b;

}

void point::print() {
cout << x << ", " << y << endl;

}

void set(point &pt, int a, int b) {
pt.x = a; pt.y = b;

}

int main() {
point p(1, 1);
p.print();
set(p, 2, 2);
p.print();

return 0;
}

result>
1, 1
2, 2

97

@ CS311, Hao Wang, SCU

Friend Class
#include<iostream>
using namespace std;

class point {
int x, y;
friend class rectangle;

public:
void set(int a, int b);

};

void point::set(int a, int b) {
x = a; y = b;

}

class rectangle {
point leftTop, rightBottom;

public:
void setLT(point pt);
void setRB(point pt);
void print();

};

void rectangle::setLT(point pt) {
leftTop.set(pt.x, pt.y);

}

void rectangle::setRB(point pt) {
rightBottom.set(pt.x, pt.y);

}

void rectangle::print() {
cout << "LT:" << leftTop.x;
cout << "," << leftTop.y << endl;
cout << "RB:" << rightBottom.x;
cout << "," << rightBottom.y << endl;

}

int main() {
rectangle sq;
point lt, rb;
lt.set(1, 1); sq.setLT(lt);
rb.set(9, 9); sq.setRB(rb);
sq.print();
return 0;

}

friend class
rectangle;

point rectangle

You’re my friend

can access whole member
Result >
LT: 1, 1
RB: 9, 9

98

@ CS311, Hao Wang, SCU

Template: Function and Class

99

@ CS311, Hao Wang, SCU

Function Template (1)

§ Useful, but what about min of two doubles?
q C-style answer: double doubleMin(double a, double b)

§ Function template is a mechanism that enables this
q produces a generic function for an arbitrary type T.

100

@ CS311, Hao Wang, SCU

Function Template (2)

101

@ CS311, Hao Wang, SCU

Function Overloading vs. Function
Template

§ Function overloading
q Same function name, but

different function prototypes
q These functions do not have

to have the same code
q Does not help in code reuse,

but helps in having a
consistent name.

§ Function template
q Same code piece, which

applies to only different types.

•#include<iostream>
•using namespace std;

•int abs(int n) {

• return n >= 0 ? n : -n;
•}

•double abs(double n) {
• return (n >= 0 ? n : -n);
•}

•int main() {
• cout << “absolute value of ” << -
123;

• cout << “ = ” << abs(-123) <<
endl;
• cout << “absolute value of ” << -
1.23;
• cout << “ = ” << abs(-1.23) <<
endl;

•}

102

@ CS311, Hao Wang, SCU

Class Template (1)
§ We can also define a generic template class
§ Example: BasicVector

q Stores a vector of elements
q Can access i-th element using [] just like an array

103

@ CS311, Hao Wang, SCU

Class Template (2)

§ BasicVector
q Constructor code?

§ How to use?

104

@ CS311, Hao Wang, SCU

Class Template (3)

§ The actual argument in the instantiation of a
class template can itself be a templated type

§ Example: Twodimensional array of int

§ BasicVector consisting of 5 elements, each of
which is a BasicVector consisting of 10 integers
q In other words, 5 by 10 matrix

105

@ CS311, Hao Wang, SCU

Exceptions

106

@ CS311, Hao Wang, SCU

Exceptions: Intro
§ Exception

q Unexpected event, e.g., divide by zero
q Can be user-defined, e.g., input of studentID > 1000
q In C++, exception is said to be "thrown"
q A thrown exception is said to be "caught" by other

code (exception handler)
q In C, we often check the value of a variable or the

return value of a function, and if… else… handles
exceptions
� Dirty, inconvenient, hard to read

107

@ CS311, Hao Wang, SCU

Exception: Also a class

108

@ CS311, Hao Wang, SCU

Exception: Throwing and Catching

ZeroDivide “is a” MathException? Yes

109

@ CS311, Hao Wang, SCU

Exception Example (1)
•#include <iostream>

•using namespace std;
•double division(int a, int b){
• if(b == 0) {
• throw "Division by zero condition!";
• }
• return (a/b);
•}

•int main () {
• int x = 50; int y = 0; double z = 0;
• try {
• z = division(x, y);
• cout << z << endl;

• } catch (const char* msg) {
• cerr << msg << endl;
• }
• return 0;
•}

110

@ CS311, Hao Wang, SCU

Exception Specification
§ In declaring a function, we should also specify the

exceptions it might throw
q Lets users know what to expect

§ Exceptions can be "passed through"

The function calculator (and any other functions it calls)
can throw two exceptions or exceptions derived from these types

111

@ CS311, Hao Wang, SCU

Exception: Any Exception and No
Exception

112

@ CS311, Hao Wang, SCU

C++ Standard Exceptions

113

@ CS311, Hao Wang, SCU

Exception Example (2)
•#include <iostream>

•#include <exception>
•using namespace std;

•class MyException : public exception {
• const char * what () const throw (){
• return "C++ Exception";
• }

•};
•int main()
•{
• try {
• throw MyException();
• }catch(MyException& e){

• std::cout << "MyException caught" << std::endl;
• std::cout << e.what() << std::endl;
• } catch(std::exception& e){
• //Other errors
• }
•}

114

@ CS311, Hao Wang, SCU

File I/O

115

@ CS311, Hao Wang, SCU

File I/O

§ Declare the stream to be processed:
#include <fstream>
ifstream ins;// input stream

ofstream outs;// output stream

§ Need to open the files
ins.open(inFile);

outs.open(outFile);

116

@ CS311, Hao Wang, SCU

Files

§ #define associates the name of the stream
with the actual file name

§ fail() function - returns nonzero if file fails
to open

§ Program CopyFile.cpp demonstrates the use
of the other fstream functions
q get, put, close and eof
q Copy from one file to another

117

@ CS311, Hao Wang, SCU

Wrap Up

§ You may not have a big problem in using the
C++ programming language

§ You may not have a big problem in doing the
homework and project assignments

§ However,
q Be ready to debug your program
q Be ready to search more things in Web
q Be ready to meet "compilation errors"

§ The online C++ Tutorials would be useful.
§ https://cplusplus.com/doc/tutorial/

118

https://cplusplus.com/doc/tutorial/

