Data Structures and

Algorithms

Lecture 7: Trees
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= Tree Traversals

= Non-Binary Trees

= Applications
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Motivation

= Suppose to design a software for bank HSBC
to support its transactions, e.g.,

o Open a bank account for a new user
o Deposit some money for a user
o Withdraw some money for a user
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Motivation (cont. 1/4)

The bank records the profile for each user

User name

User ID number
Home address
Balance

Contact number

Bank Account number

The bank account numbers are used to
uniquely distinguish different users.
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Motivation (cont. 2/4)

For deposit and withdrawal transactions, the
software should quickly response upon
giving the account number

The software also needs to quickly open an
account for a new user
What is the type of data structure better?

such that both searching and insertion are quickly
performed by the system
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Motivation (cont. 3/4)

Suppose using array-based list
Searching time is ©(log n), fast Y
But the insertion is slow, ©(n) on average (=

How is it linked list?

Fast insertion by inserting at the
beginning of the list, i.e., (1) time &
Slow searching, ®(n) on average (&,

None supports both fast searching and
Insertion Operati()ns! @@
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Motivation (cont. 4/4)

In this lecture, we introduce a new data

structure, called tree and practically binary
free, such that

Suppose the tree's height is log n )
Searching: ®(log n) on average @
Insertion: ©®(log n) on average @
Removal: ©(log n) on average
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What is a tree?

Trees are structures used to represent
hierarchical relationship

Eac
Eac

Eac
two

N tree consists of nodes and edges
N node represents an object

N edge represents the relationship between

nodes.

7
© 0
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Some applications of Trees

Organization Chart

President

VP VP
Personnel @ Marketing

é%

Director  pirector
Relation

Expression Tree
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Terminology in a Tree

Node, edge

Children, parent (A)
Ancestor, descendant

Leaf node, internal node 9 0

Subtree e G o

Path

Depth, level (a) (v) (1)

Tree height
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Terminology I

For any two nodes u and v, if there is an edge
pointing from u to v, u is called the parent of v
while v is called the child of u. Such edge is

denoted as (u, v).

In a tree, there is exactly one node without
parent, which is called the root. The nodes
without children are called leaves.

root

u: parent of v 7\
v: child of u g leaves
0
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Terminology 11

* |In a tree, the nodes without children are
called leaves. Otherwise, they are called
Internal nodes.

internal nodes
7
QO

S

leaves
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Terminology I11

= |f two nodes have the same parent, they are
siblings.

= A node uis an ancestor of v if u is parent of v or
parent of parent of v or ...

= A node vis adescendent of uifvis child of vor
child of child of v or ...

v and w are siblings

u and v are ancestors of x
v and x are descendents of u A

7
©0
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Terminology IV

= A subftree is any node together with all its
descendants.

A subtree of T
7

NP
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Terminology V

= Level of a node n: number of nodes on the path from
root to node n

= Height of a tree: maximum level among all of its node
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Binary Tree (BTree, or simple BT)

Binary Tree (BT): Tree in which every node has
at most TWO children

A root, and left / right subtrees
Left child of u: the child on the left of u
Right child of u: the child on the right of u

root

N

'y
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| Full, Complete, and Perfect BT

Suppose T is empty, full or complete?

Full BT: Each note in a full binary tree is either (1) an
internal node with exactly two non-empty children or (2)
a leaf.

Complete BT: In the complete binary tree of height h >0,

all levels except possibly level h-1 are completely full,
and all nodes in the last level are as far left as possible.

Perfect BT = Full + Complete
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Minimum and Maximum Fraction

How many leaf nodes are in a binary tree
with n internal nodes
.\Q Any number of

> internal nodes

The minimum number is one. '\'
When all nodes are arranged in a chain

What is the maximum number?

This upper bound occurs when each internal node
has exactly two children, i.e., the tree is full.
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‘ Full Binary Tree Theorem

Theorem: The number of leaves in a non-empty
full binary tree is one more than the number of
internal nodes.

Proof. By mathematical induction.
See textbook for details.

No. of the internal nodes is 3.
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‘ Full Binary Tree Corollary

Theorem: The number of empty subtrees in a
non-empty binary tree is one more than the
number of nodes in the tree.

Proof. Replace every empty subtree with a leaf
node to create a new tree. The new tree is a
full binary tree.
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Property of binary tree (I)

= A perfect BTree of height h has 2"-1 nodes
No. of nodes = 20 + 21 + ., + 2(h-1)
=2 —1

Level 0: 2° nodes

Level 1: 21 nodes

4

Level 2: 22 nodes
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Property of binary tree (II)

= Consider a binary tree T of height h. The
number of nodes of T is no more than 2"-1

Reason: you cannot have more nodes than a
perfect binary tree of height h.
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Property of binary tree (I11)

= The minimum height of a binary tree with n
nodes is log(n+1)

By property (I), n < 2h-1
Thus, 2h > n+1
Thatis, h > log, (n+1)

@ CS311, Hao Wang, SCU
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Binary Tree ADT

setElem
getElem \

getLeft, getRight

—

setLeft, setRight

isEmpty, isFull,
/ isComplete

makeTree
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Implementation of Binary Tree

Array-based implementation
Pointer-based implementation

(@ CS311, Hao Wang, SCU
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‘ Array-based implementation

nodeNum item leftChild | rightChild
—1: denotes empty tree root
0 d 1 2 0
1 b 3 4
2 f -1
3 a -1 -1
4 c -1 -1
5 e -1 -1
6 ? ? ? free
7 ? ? ? 6
8 ? ? ?
9 ? ? ?
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‘ Pointer-based implementation

NULL: denote empty tree

You can code this with a
class of three fields:

Object element;

BinaryNode left;

e

left

element right

//

AN

BinaryNode right;

*

1
® O

/

4

*

:
@

:
©

An expression tree for 4x(2x + a) — ¢

(@ CS311, Hao Wang, SCU
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Space Overhead (1/3)

We consider pointer-based implementation.

If all tree nodes have the same type, assume
that there are n nodes

Data storage: n * D

Pointer Storage: n * 2P

Total storage: n * (D + 2P)

Overhead ratio: 2P / (D+2P)

The ratio is 2/3, if D=P.

P denotes the amount of a space required by a pointer.
D denotes the amount of a space required by a data value.
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Space Overhead (2/3)

If leaf nodes only store data (no pointers),
then overhead depends on whether the tree
is full. Consider a full binary tree:

Assume that there are n internal nodes

The number of leaves is n+1

Data storage: (n+(n+1))D=(2n+1)D

Pointer storage: n*2P

Total storage: n*2P+(2n+1)D

Overhead ratio: = P/(P+D), when n is large

The ratio is 1/2, if P=D.
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Space Overhead (3/3)

If only leaf nodes store useful information,
then in a full binary tree with n internal nodes
The number of leaves is n+1
Useful data storage: (n+7)D=(n+1)D
Empty data stroage: n*D
Pointer storage: n*2P
Total storage: n*2P+(2n+1)D

Overhead ratio: = (2P+D)/(2P+2D), when n is
large
The ratio is 3/4, if P=D.
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Tree Traversal

Given a binary tree, we may like to do some
operations on all nodes in a binary tree. For
example, we may want to double the value in
every node in a binary tree.

To do this, we need a traversal algorithm
which visits every node in the binary tree.
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Ways to traverse a tree

There are three main ways to traverse a tree:

Pre-order:

(1) visit node, (2) recursively visit left subtree, (3) recursively
visit right subtree

In-order:

(1) recursively visit left subtree, (2) visit node, (3) recursively
right subtree

Post-order:

(1) recursively visit left subtree, (2) recursively visit right
subtree, (3) visit node

Level-order:
Traverse the nodes level by level

In different situations, we use different traversal
algorithm.
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Examples for expression tree

By pre-order, (prefix)
+*23/84

By in-order, (infix)
2*3+8/4

By post-order, (postfix)
23784 /+

By level-order,
+*/2384

Note 1: Infix is what we read!

Note 2: Postfix expression can be computed
efficiently using stack

(@ CS311, Hao Wang, SCU
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Pre-order

Algorithm pre-order (BTree x)

1f (x 1s not empty) {
print x.getItem(); // youcan do other things!
pre-order (x.getLeftChild());
pre-order (x.getRightChild());

@ CS311, Hao Wang, SCU
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Pre-order example

Pre-order(a); — Print a; / Print b; / Print d;

Pre-order(b); Pre-order(d); Pre-order(null);
Pre-order(c); \ Pre-order(null); Pre-order(null);
Print c;

Pre-order(null);
Pre-order(null);
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Time complexity of Pre-order
Traversal

For every node x, we will call
pre-order(x) one time, which performs O(1)

operations.
Thus, the total time = O(n).

(@ CS311, Hao Wang, SCU
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In-order and post-order

Algorithm in-order (BTree x)

If (x 1s not empty) {
in-order (x.getLeftChild());
print x.getItem(); // you can do other things!
in-order (x.getRightChild());

Algorithm post-order (BTree x)
If (x 1s not empty) {
post-order (x.getLeftChild());
post-order (x.getRightChild());
print x.getItem(); // you can do other things!

(@ CS311, Hao Wang, SCU
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In-order example

In-order(a); — In-order(b); — In-order(d); —— In-order(null);

Print a; Print b; Print d;
In-order(c); « ~—— In-order(null); — In-order(null);

AN

In-order(null);
Print c;
In-order(null);
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Post-order example

Post-order(a); — Post-order(b);— > Post-order(d); — > Post-order(null);

Post-order(c); — Post-order(null); ~— Post-order(null);
Print d;

Print a; \ Print b;

Post-order(null);
Print c;
Post-order(null);
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Time complexity for in-order and
post-order

Similar to pre-order traversal, the time
complexity is O(n).

(@ CS311, Hao Wang, SCU
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Level-order

Level-order traversal requires a queue!

Algorithm level-order (BTree t)
Queue QO = new Queue () ;
BTree n;

Q.enqueue (t) ; // insert pointertinto Q

while (! Q.empty()) {
n = Q.dequeue (); // remove next node from the front of Q

1f (!'n.isEmpty()) {
print n.getItem();// Yyou can do other things
Q.enqueue (n.getleft()); // enqueue left subtree on rear of Q
Q.enqueue (n.getRight () ; // enqueue right subtree on rear of Q
I
I
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Time complexity of Level-order
traversal

Each node will enqueue and dequeue one
time.

For each node dequeued, it only does one
print operation!

Thus, the time complexity is O(n).

(@ CS311, Hao Wang, SCU 42



Non-Binary Trees

Non-Binary Tree (General Tree)

A non-binary or general tree is a tree in which at
least one node has more than two children. Such

nodes are referred to as polytomies, or non-
binary nodes.

Binary Tree

General Tree
- Two, one or zero child - Any number of child
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General tree implementation

struct TreeNode @

{ y
Object  element e e Q e
TreeNode *firstChild

TreeNode *nextsibling

}

because we do not know how many children a
node has in advance.

= Traversing a general tree is similar to traversing
a binary tree.
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K-ary trees

An K-ary tree Is a tree

where each node can have up to K children, where
each of the children are non-overlapping K-ary trees.

The PR quadtree discussed later is a 4-ary tree.
()

An example of 4-ary tree

Full and Complete K-ary trees are analogous to
full and complete binary trees, respectively.
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Applications of binary trees

Binary search trees
Heaps and priority queues
Huffman coding trees

(@ CS311, Hao Wang, SCU
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Binary Search Tree (BST)

Unsorted list for Dictionary implementation
iInserting a new record « quick
searching an unsorted list — ©®(n) on average

|s there any solution to seep up?
Binary search tree (BST)

A BST is a binary tree, iff
For each node, assume the node value is K
The values of the nodes in its left subtree are < K
The values of the nodes in its right subtree are = K
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BST class

template <typename Key, typename E>
class BST {

private:

BSTNode<Key, E>* root; // Rootofthe BST

int nodeCount; // Number of nodes in the BST
public:

BST () { root = NULL; nodecount = 0; } // Constructor
“BST () { clearhelp(root); } // Destructor

void clear () // Reinitialize tree

{ clearhelp(root); root = NULL; nodecount = 0; }
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BST clear

vold clearhelp (BSTNode<Key, E>* rt) {
1f (rt == NULL) return;
//postorder traversal
clearhelp( rt->left () );
clearhelp( rt->right () );
delete rt;

Time complexity is ®( n ) with n nodes
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BST Search

E findhelp(BSTNode<Key, E>* rt, const Key& k) const {
if (rt == NULL) return NULL,; // Empty tree
if (kK < rt->key())
return findhelp( rt->left(), k); // Check left subtree
else if (k > rt->key())
return findhelp( rt->right(), k); // Check right
else return rt->element(); // Found it

Time complexity of search is ©( d) if the height
of the tree is d
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BST Insert (1)

Time complexity of insertion is O( d) if the
height of the tree is d




BST Insert (2) — similar to search

BSTNode<Key, E>* inserthelp( BSTNode<Key, E>* root,
const Key& k, const E& it) {
if (rt == NULL) // different: Empty tree: create node
return new BSTNode<Key, E>(k, it, NULL, NULL);
BSTNode<Key, E>* tmp;
if (k < rt->key()}{
tmp = inserthelp(rt->left(), k, it) ;
rt->setLeft( tmp );
telse{ // k >= rt->key()
tmp = inserthelp(root->right(), k, it);
root->setRight(tmp);
}

return root; // Return tree with node inserted
}
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BST Removal

First consider removing the node with the
minimum value

Then, consider the general case

(@ CS311, Hao Wang, SCU
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Remove Minimum Value

Where is the minimum value stored ?
The most left node in the tree subroot

How to modify pointers?
Let its parent point to its right child

BSTNode<Key, E>* deletemin(BSTNode<Key, E>* rt) {
if (rt->left() == NULL) // Found min
return rt->right();
else {// Continue left
rt->setLeft( deletemin(rt->left()) );
return rt;

}
}
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BST removal — general case

Only three cases

Case 1: Remove a node with no children
Simply remove the node

Case 2: Remove a node with only one child

Similar to the case of removing the minimum, by
letting its parent point to its child

Case 3: Remove a node with two children
Transformed to case 2
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BST Remove, case 3

Now remove 37

Find the minimum value larger than 37, i.e., 40
40 is the minimum value in its right subtree
Replace 37 with 40

Remove the node that previously contains 40
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‘ BST Remove, case 3 example




BSTNode<Key, E>* removehelp(BSTNode<Key, E>* rt, const Key& k) {
if (t == NULL) return NULL; // k is not in tree
else if (k < rt->key())
rt->setlLeft( removehelp(rt->left(), k));
else if (k > rt->key())
rt->setRight( removehelp(rt->right(), k));
else {// Found: remove it
BSTNode<Key, E>* temp = rf;
if (rt->left() == NULL) { // Only a right child
rt = rt->right(); // so point to right
delete temp;
}
else if (rt->right() == NULL) { // Only a left child
rt = rt->left(); // so point to left
delete temp;

}
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else { // Both children are non-empty
BSTNode<Key, E>* temp = getmin(rt->right());
rt->setElement( temp->element() );
rt->setKey( temp->key() );
rt->setRight(deletemin(rt->right()));
delete temp;

}

}

return rt;

« Time complexity of removal is ®( d ) if the height
of the tree is d
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| Time Complexity of BST Operations

Search: ©( d )
Insertion: ®( d)
removal: ©( d)

d = the tree height

d is ®(log n) if tree is balanced.
What is the worst case?
O(n)

How to obtain a balanced tree ?
See Chapter 13.2 for the AVL balanced tree if you are interested
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Heaps and Priority Queues

Problem: We want a data structure that
stores records as they come (insert), but on
request, releases the record with the greatest
value (removemax)

Example: Scheduling jobs in a multi-tasking
operating system, the value of each task is its

priority
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Priority Queues-cont.

Possible Solutions:

A simple linked list
insert appends to a linked list (®(1) )

removemax determines the maximum by scanning the
list (©(n) )

A linked list is used and is in decreasing order

insert places an element in its correct position (®(n) )
removemax removes the head of the list (©(1) ).

Use a heap — both insert and removemax
are O( log n ), introduced later
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Heap — a special binary tree

Heap: Complete Btree with the heap property:

Max-heap: each value in a node is no less than
its children values

The values in the tree are partially ordered.
The left child may less or greater than its right child

/
) >

/
/17 / /25

-~

N J
P
TN
@
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‘ Array-based Heap Implementation

= Logic topology:

= |t is a complete
binary tree

= Tree height ©( log n)

®
AL DOOOOOO®

@WOWEWO®HGOOOOOOOO®
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Array Implementation (1)

If a node is stored at array|[r], where are its
parent and children stored ?

Parent (r) = (r-1)/2if r#0and r<n.
Leftchild(r) =2r+ 1if 2r+ 1 <n.
Rightchild(r) =2r+ 2 it 2r + 2 < n.

® QO
- DOOOOOOE
TYoYolololelelolclcleloYoYoYo
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Heap -- insert

Add the element to the bottom level of the heap,
l.e., Heapl[n], then n++, suppose x=15
Compare the added element with its parent (shift
up operation)

if it is no greater than its parent, stop

If not (i.e., larger), swap the element with its parent
and return to the previous step

Worst time complexity ©( log n)

/\ /\ /\

/ \ ; / \ /
® ©® x @/ \@ ./ B ®
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Heap - removeMax

Replace the root of the heap with the last
element on the last level

Compare the new root with its children (shift
down operation)
if the new root is larger than its children, stop.

If not, swap the element with its largest children, and
return to the previous step

Worst time complexity @( log n)

@/ N o7 e
ofio of
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Build a Heap from an array

= Build from the middle to the first node in the
array, perform a shift-down operation for each
node

Al4|1[|3(2(16]9(10(14|8 (7

\C
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‘ Build a Heap from an array (cont.)

Time complexity of building a heap is ®( n ), see
the textbook for its analysis
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Huffman coding

Computers store data with bits O and 1

Assume that there are only three types of
letters A, B, and C in a text

letter A appears 98 times

both B and C appear only once

there are 100 letters in the text

How to encode letters A, B, C, such that the
total number of bits to represent the 100
letters is minimized?
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Possible encoding solutions

Solution 1: each letter is coded with two bits
A: bits 00
B: bits 01
C: bits 10
08*2+1*2+1*2= 200 bits are needed

Solution 2: non-equal length encoding
A: bit 0, as A appears more frequently
B: bits 10
C: bits 11
98*1 + 1*2 + 1*2 = 102 bits are needed!

(@ CS311, Hao Wang, SCU

71



Huffman coding

Consider a general case with more than three
letters ?

Letter
Frequency

o N

K M C U D L E
7 24 32 37 42 42 120

David Albert Huffman (1925-1999) solved the
problem in 1952, when he was a Ph.D. student
at MIT.

This coding method is named by his family name

Basic idea: assign short codes for frequent
letters, but long codes for rare letters
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Huttman coding solution

Create n initial Huffman trees, each a single

leaf node containing one of the letters.

24 32 37 42 42 120

21 [7
Sep -t 21 k] Iml el [u D L E

Select the two trees with the lowest weights,

create a new tree by joining them
Its root has the two trees as children

The root weight is the sum of the weights of the two

trees /(@\ oa] [32] [37] [a2] [a2
Step 2: M C U D L

120
E

2 7
Z K
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| Huffman coding solution — cont.

Continue Step 2 until only one tree is left

32 37 42 42 120

C & U D L E

Step 3: 24
M

2] [7
2| |k
7 [2] [ B /__ ...... ) 120

Step 4: =

N o
AN
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‘ Assign codes based on the final tree

Beginning at the root

‘0’ is assigned to edges linking a node with its left child

‘1’ to edges connecting a node with its right child
The code of each letter is the binary number on the path
from the root to its letter leaf node

e.g., the code of letter C is 1110

0 /—--_____1_______
1 éo ‘‘‘‘ 9_-~--““‘--— 1
o 491
:67 4D2 4Lz o,__ ...... 1

;o:
zﬁ/
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Summary

We have discussed

the tree data-structure.
Binary tree vs general tree
Binary tree ADT
Can be implemented using arrays or references
Tree traversal
Pre-order, in-order, post-order, and level-order

Binary tree applications

Binary search tree, heaps and priority queues, Huffman
coding trees
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