
@ CS311, Hao Wang, SCU

Data Structures and 
Algorithms

Lecture 7: Trees



@ CS311, Hao Wang, SCU

Outline of Today's Lecture

§ Motivation
§ Binary trees
§ Property of binary tree
§ Binary Tree ADT
§ Tree Traversals
§ Non-Binary Trees
§ Applications

edge
node

2



@ CS311, Hao Wang, SCU

Motivation

§ Suppose to design a software for bank HSBC 
to support its transactions, e.g.,
q Open a bank account for a new user
q Deposit some money for a user
q Withdraw some money for a user

3



@ CS311, Hao Wang, SCU

Motivation (cont. 1/4)

§ The bank records the profile for each user
q User name
q User ID number
q Home address
q Balance 
q Contact number
q Bank Account number
q ….

§ The bank account numbers are used to 
uniquely distinguish different users.

4



@ CS311, Hao Wang, SCU

Motivation (cont. 2/4)

§ For deposit and withdrawal transactions, the 
software should quickly response upon 
giving the account number

§ The software also needs to quickly open an 
account for a new user

§ What is the type of data structure better?
q such that both searching and insertion are quickly

performed by the system

5



@ CS311, Hao Wang, SCU

Motivation (cont. 3/4)

§ Suppose using array-based list
q Searching time is Q(log n), fast
q But the insertion is slow, Q(n) on average

§ How is it linked list?
q Fast insertion by inserting at the 

beginning of the list, i.e., Q(1) time
q Slow searching, Q(n) on average

§ None supports both fast searching and 
insertion operations!

6



@ CS311, Hao Wang, SCU

Motivation (cont. 4/4)

§ In this lecture, we introduce a new data 
structure, called tree and practically binary 
tree, such that
Ø Suppose the tree's height is log n
q Searching: Q(log n) on average
q Insertion:   Q(log n) on average
q Removal:  Q(log n) on average

7



@ CS311, Hao Wang, SCU

What is a tree?

§ Trees are structures used to represent 
hierarchical relationship
q Each tree consists of nodes and edges
q Each node represents an object
q Each edge represents the relationship between 

two nodes.

edge
node

8



@ CS311, Hao Wang, SCU

Some applications of Trees

President

VP
Personnel

VP
Marketing

Director
Customer
Relation

Director
Sales

Organization Chart

+

* 5

3 2

Expression Tree

9



@ CS311, Hao Wang, SCU

Terminology in a Tree

§ Node, edge
§ Children, parent
§ Ancestor, descendant
§ Leaf node, internal node
§ Subtree
§ Path
§ Depth, level
§ Tree height

10



@ CS311, Hao Wang, SCU

Terminology I
§ For any two nodes u and v, if there is an edge 

pointing from u to v, u is called the parent of v 
while v is called the child of u. Such edge is 
denoted as (u, v).

§ In a tree, there is exactly one node without 
parent, which is called the root. The nodes 
without children are called leaves.

u

v

root

u: parent of v
v: child of u leaves

11



@ CS311, Hao Wang, SCU

Terminology II

§ In a tree, the nodes without children are 
called leaves. Otherwise, they are called 
internal nodes.

internal nodes

leaves

12



@ CS311, Hao Wang, SCU

Terminology III

§ If two nodes have the same parent, they are 
siblings.

§ A node u is an ancestor of v if u is parent of v or 
parent of parent of v or …

§ A node v is a descendent of u if v is child of v or 
child of child of v or … u

v w

x

v and w are siblings
u and v are ancestors of x
v and x are descendents of u

13



@ CS311, Hao Wang, SCU

Terminology IV

§ A subtree is any node together with all its 
descendants.

v v

T
A subtree of T

14



@ CS311, Hao Wang, SCU

Terminology V

§ Level of a node n: number of nodes on the path from 
root to node n

§ Height of a tree: maximum level among all of its node

n

Level 0

Level 1

Level 2

Level 3

height=4

15



@ CS311, Hao Wang, SCU

Binary Tree (BTree, or simple BT)

§ Binary Tree (BT): Tree in which every node has 
at most TWO children
q A root, and left / right subtrees

§ Left child of u: the child on the left of u
§ Right child of u: the child on the right of u

u

x y
z

w

v
x: left child of u
y: right child of u
w: right child of v
z: left child of w

root

16



@ CS311, Hao Wang, SCU

Full, Complete, and Perfect BT

§ Full BT: Each note in a full binary tree is either (1) an 
internal node with exactly two non-empty children or (2) 
a leaf. 

§ Complete BT: In the complete binary tree of height h >0, 
all levels except possibly level h-1 are completely full, 
and all nodes in the last level are as far left as possible.

§ Perfect BT = Full + Complete

Suppose T is empty, full or complete? 

17



@ CS311, Hao Wang, SCU

Minimum and Maximum Fraction

§ How many leaf nodes are in a binary tree 
with n internal nodes

§ The minimum number is one.
q When all nodes are arranged in a chain

§ What is the maximum number?
q This upper bound occurs when each internal node 

has exactly two children, i.e., the tree is full.

18



@ CS311, Hao Wang, SCU

Full Binary Tree Theorem 

Theorem: The number of leaves in a non-empty 
full binary tree is one more than the number of 
internal nodes.

Proof. By mathematical induction. 
See textbook for details.

No. of the internal nodes is 3.

19



@ CS311, Hao Wang, SCU

Full Binary Tree Corollary

Theorem: The number of empty subtrees in a 
non-empty binary tree is one more than the 
number of nodes in the tree.

Proof: Replace every empty subtree with a leaf 
node to create a new tree. The new tree is a 
full binary tree.

20



@ CS311, Hao Wang, SCU

Property of binary tree (I)

§ A perfect BTree of height h has 2h-1 nodes
No. of nodes = 20 + 21 + … + 2(h-1)

= 2h – 1

Level 0: 20 nodes

Level 1: 21 nodes

Level 2: 22 nodes

21



@ CS311, Hao Wang, SCU

Property of binary tree (II)

§ Consider a binary tree T of height h. The 
number of nodes of T is no more than 2h-1

Reason: you cannot have more nodes than a 
perfect binary tree of height h.

22



@ CS311, Hao Wang, SCU

Property of binary tree (III)

§ The minimum height of a binary tree with n 
nodes is log(n+1)

By property (II), n £ 2h-1
Thus, 2h ³ n+1
That is, h ³ log2 (n+1)

23



@ CS311, Hao Wang, SCU

Binary Tree ADT

binary
tree 

setLeft, setRight
getElem

getLeft, getRight

isEmpty, isFull, 
isComplete

setElem

makeTree

24



@ CS311, Hao Wang, SCU

Implementation of Binary Tree

§ Array-based implementation
§ Pointer-based implementation

25



@ CS311, Hao Wang, SCU

Array-based implementation

–1: denotes empty tree

d

b f

a c e

nodeNum item leftChild rightChild

0 d 1 2
1 b 3 4
2 f 5 -1
3 a -1 -1
4 c -1 -1
5 e -1 -1
6 ? ? ?
7 ? ? ?
8 ? ? ?
9 ? ? ?
... ..... ..... ....

0

6
free

root

26



@ CS311, Hao Wang, SCU

Pointer-based implementation

NULL: denote empty tree
left rightelement

You can code this with a 
class of three fields:

Object element;

BinaryNode left;

BinaryNode right;

An expression tree for 4𝑥 2𝑥 + 𝑎 − 𝑐

27



@ CS311, Hao Wang, SCU

Space Overhead (1/3)

§ We consider pointer-based implementation.
§ If all tree nodes have the same type, assume 

that there are n nodes
q Data storage: n * D
q Pointer Storage: n * 2P
q Total storage: n * ( D + 2P)
q Overhead ratio: 2P / (D+2P)
q The ratio is 2/3, if D=P.

P denotes the amount of a space required by a pointer.
D denotes the amount of a space required by a data value.

28



@ CS311, Hao Wang, SCU

Space Overhead (2/3)

§ If leaf nodes only store data (no pointers), 
then overhead depends on whether the tree 
is full. Consider a full binary tree:
q Assume that there are n internal nodes
q The number of leaves is n+1
q Data storage: (n+(n+1))D=(2n+1)D
q Pointer storage: n*2P
q Total storage: n*2P+(2n+1)D
q Overhead ratio: ≈ P/(P+D), when n is large
q The ratio is 1/2, if P=D.

29



@ CS311, Hao Wang, SCU

Space Overhead (3/3)

§ If only leaf nodes store useful information, 
then in a full binary tree with n internal nodes
q The number of leaves is n+1
q Useful data storage: (n+1)D=(n+1)D
q Empty data stroage: n*D
q Pointer storage: n*2P
q Total storage: n*2P+(2n+1)D
q Overhead ratio: ≈ (2P+D)/(2P+2D), when n is 

large
q The ratio is 3/4, if P=D.

30



@ CS311, Hao Wang, SCU

Tree Traversal

§ Given a binary tree, we may like to do some 
operations on all nodes in a binary tree. For 
example, we may want to double the value in 
every node in a binary tree.

§ To do this, we need a traversal algorithm 
which visits every node in the binary tree.

31



@ CS311, Hao Wang, SCU

Ways to traverse a tree

§ There are three main ways to traverse a tree:
q Pre-order: 

� (1) visit node, (2) recursively visit left subtree, (3) recursively 
visit right subtree

q In-order:
� (1) recursively visit left subtree, (2) visit node, (3) recursively 

right subtree
q Post-order:

� (1) recursively visit left subtree, (2) recursively visit right 
subtree, (3) visit node

q Level-order:
� Traverse the nodes level by level

§ In different situations, we use different traversal 
algorithm.

32



@ CS311, Hao Wang, SCU

Examples for expression tree
§ By pre-order, (prefix)

+ * 2 3 / 8 4
§ By in-order, (infix)

2 * 3 + 8 / 4
§ By post-order, (postfix)

2 3 * 8 4 / +
§ By level-order,

+ * / 2 3 8 4
§ Note 1: Infix is what we read!
§ Note 2: Postfix expression can be computed 

efficiently using stack

+

* /

2 3 8 4

33



@ CS311, Hao Wang, SCU

Pre-order

Algorithm pre-order(BTree x)
if (x is not empty) {
print x.getItem(); // you can do other things!

pre-order(x.getLeftChild());
pre-order(x.getRightChild());

}

34



@ CS311, Hao Wang, SCU

Pre-order example

a

b c

d

Pre-order(a); Print a;
Pre-order(b);
Pre-order(c);

Print b;
Pre-order(d);
Pre-order(null);

Print c;
Pre-order(null);
Pre-order(null);

Print d;
Pre-order(null);
Pre-order(null);

a b d c

35



@ CS311, Hao Wang, SCU

Time complexity of Pre-order 
Traversal

§ For every node x, we will call 
pre-order(x) one time, which performs O(1) 
operations.

§ Thus, the total time = O(n).

36



@ CS311, Hao Wang, SCU

In-order and post-order

Algorithm in-order(BTree x)
If (x is not empty) {

in-order(x.getLeftChild());
print x.getItem(); // you can do other things!
in-order(x.getRightChild());

}

Algorithm post-order(BTree x)
If (x is not empty) {

post-order(x.getLeftChild());
post-order(x.getRightChild());
print x.getItem(); // you can do other things!

}

37



@ CS311, Hao Wang, SCU

In-order example

In-order(a);

a

b c

d

In-order(b);
Print a;
In-order(c);

In-order(d);
Print b;
In-order(null);

In-order(null);
Print c;
In-order(null);

In-order(null);
Print d;
In-order(null);

d b a c

38



@ CS311, Hao Wang, SCU

Post-order example

Post-order(a);

a

b c

d

Post-order(b);
Post-order(c);
Print a;

Post-order(d);
Post-order(null);
Print b;

Post-order(null);
Print c;
Post-order(null);

Post-order(null);
Post-order(null);
Print d;

d b c a

39



@ CS311, Hao Wang, SCU

Time complexity for in-order and 
post-order

§ Similar to pre-order traversal, the time 
complexity is O(n).

40



@ CS311, Hao Wang, SCU

Level-order

§ Level-order traversal requires a queue!

Algorithm level-order(BTree t)
Queue Q = new Queue();
BTree n;

Q.enqueue(t);// insert pointer t into Q 

while (! Q.empty()){
n = Q.dequeue(); // remove next node from the front of Q 

if (!n.isEmpty()){
print n.getItem();// you can do other things
Q.enqueue(n.getLeft());  // enqueue left subtree on rear of Q
Q.enqueue(n.getRight()); // enqueue right subtree on rear of Q

};
};

41



@ CS311, Hao Wang, SCU

Time complexity of Level-order 
traversal

§ Each node will enqueue and dequeue one 
time.

§ For each node dequeued, it only does one 
print operation!

§ Thus, the time complexity is O(n).

42



@ CS311, Hao Wang, SCU

Non-Binary Trees

§ Non-Binary Tree (General Tree)
q A non-binary or general tree is a tree in which at 

least one node has more than two children. Such 
nodes are referred to as polytomies, or non-
binary nodes.

43



@ CS311, Hao Wang, SCU

General tree implementation
struct TreeNode
{

Object      element
TreeNode *firstChild
TreeNode *nextsibling

}

because we do not know how many children a
node has in advance.

§ Traversing a general tree is similar to traversing 
a binary tree.

A

GF

DCB E

44



@ CS311, Hao Wang, SCU

K-ary trees

§ An K-ary tree is a tree 
q where each node can have up to K children, where 

each of the children are non-overlapping K-ary trees.
§ The PR quadtree discussed later is a 4-ary tree.

§ Full and Complete K-ary trees are analogous to 
full and complete binary trees, respectively.

45

An example of 4-ary tree



@ CS311, Hao Wang, SCU

Applications of binary trees

§ Binary search trees
§ Heaps and priority queues
§ Huffman coding trees

46



@ CS311, Hao Wang, SCU

Binary Search Tree (BST)

§ Unsorted list for Dictionary implementation
q inserting a new record ← quick
q searching an unsorted list ← Q(n) on average

§ Is there any solution to seep up?
§ Binary search tree (BST)

§ A BST is a binary tree, iff
q For each node, assume the node value is K
q The values of the nodes in its left subtree are < K
q The values of the nodes in its right subtree are ≥ K

47



@ CS311, Hao Wang, SCU

BST class

template <typename Key, typename E>
class BST {

private:

BSTNode<Key,E>*  root; // Root of the BST
int       nodeCount; // Number of nodes in the BST

public:

BST() { root = NULL; nodecount = 0; } // Constructor
˜BST() { clearhelp(root); } // Destructor
void clear() // Reinitialize tree
{ clearhelp(root); root = NULL; nodecount = 0; }

48



@ CS311, Hao Wang, SCU

BST clear

void clearhelp(BSTNode<Key, E>* rt) {

if (rt == NULL) return;
//postorder traversal

clearhelp( rt->left() );
clearhelp( rt->right() );

delete rt;

}

§ Time complexity is Q( n ) with n nodes

49



@ CS311, Hao Wang, SCU

BST Search

E findhelp(BSTNode<Key, E>* rt, const Key& k) const {
if (rt == NULL) return NULL; // Empty tree
if (k < rt->key())

return findhelp( rt->left(), k); // Check left subtree
else if (k > rt->key())

return findhelp( rt->right(), k); // Check right
else return rt->element(); // Found it

}
§ Time complexity of search is Q( d ) if the height 

of the tree is d

50



@ CS311, Hao Wang, SCU

BST Insert (1)

§ Time complexity of insertion is Q( d ) if the 
height of the tree is d

51



@ CS311, Hao Wang, SCU

BST Insert (2) – similar to search
BSTNode<Key, E>* inserthelp( BSTNode<Key, E>* root,  

const Key& k,    const E& it) {
if (rt == NULL) // different: Empty tree: create node

return new BSTNode<Key, E>(k, it, NULL, NULL);
BSTNode<Key, E>* tmp; 
if (k < rt->key()){

tmp = inserthelp(rt->left(), k, it) ;
rt->setLeft( tmp );

}else{  // k >= rt->key() 
tmp = inserthelp(root->right(), k, it);
root->setRight(tmp);

}
return root; // Return tree with node inserted

}
52



@ CS311, Hao Wang, SCU

BST Removal

§ First consider removing the node with the 
minimum value

§ Then, consider the general case

53



@ CS311, Hao Wang, SCU

Remove Minimum Value

§ Where is the minimum value stored ?
q The most left node in the tree

§ How to modify pointers?
q Let its parent point to its right child

BSTNode<Key, E>* deletemin(BSTNode<Key, E>* rt) {
if (rt->left() == NULL) // Found min

return rt->right();
else { // Continue left

rt->setLeft(   deletemin(rt->left()) );
return rt;

}
}

54



@ CS311, Hao Wang, SCU

BST removal – general case

§ Only three cases 
§ Case 1: Remove a node with no children

q Simply remove the node
§ Case 2: Remove a node with only one child

q Similar to the case of removing the minimum, by 
letting its parent point to its child

§ Case 3: Remove a node with two children
q Transformed to case 2

55



@ CS311, Hao Wang, SCU

BST Remove, case 3

§ Now remove 37
§ Find the minimum value larger than 37, i.e., 40
§ 40 is the minimum value in its right subtree
§ Replace 37 with 40
§ Remove the node that previously contains 40 

56



@ CS311, Hao Wang, SCU

BST Remove, case 3 example

57



@ CS311, Hao Wang, SCU

BSTNode<Key, E>* removehelp(BSTNode<Key, E>* rt, const Key& k) {
if (rt == NULL) return NULL; // k is not in tree
else if (k < rt->key())

rt->setLeft(  removehelp(rt->left(), k));
else if (k > rt->key())

rt->setRight(  removehelp(rt->right(), k));
else { // Found: remove it

BSTNode<Key, E>* temp = rt;
if (rt->left() == NULL) { // Only a right child

rt = rt->right(); // so point to right
delete temp;

}
else if (rt->right() == NULL) { // Only a left child

rt = rt->left(); // so point to left
delete temp;

}

58



@ CS311, Hao Wang, SCU

else { // Both children are non-empty
BSTNode<Key, E>* temp = getmin(rt->right());
rt->setElement( temp->element() );
rt->setKey( temp->key() );
rt->setRight(deletemin(rt->right()));
delete temp;

}
}
return rt;

}

• Time complexity of removal is Q( d ) if the height 
of the tree is d

59



@ CS311, Hao Wang, SCU

Time Complexity of BST Operations

§ Search: Q( d ) 
§ Insertion: Q( d ) 
§ removal: Q( d ) 

§ d = the tree height
§ d is Q(log n) if tree is balanced.  
§ What is the worst case?

q Q(n)
§ How to obtain a balanced tree ?

q See Chapter 13.2 for the AVL balanced tree if you are interested

60



@ CS311, Hao Wang, SCU

Heaps and Priority Queues

§ Problem:  We want a data structure that 
stores records as they come (insert), but on 
request, releases the record with the greatest 
value (removemax)

§ Example: Scheduling jobs in a multi-tasking 
operating system, the value of each task is its 
priority

61



@ CS311, Hao Wang, SCU

Priority Queues-cont.

Possible Solutions:
§ A simple linked list

q insert appends to a linked list (Q(1) )
q removemax determines the maximum by scanning the 

list (Q(n) )
§ A linked list is used and is in decreasing order

q insert places an element in its correct position (Q(n) ) 
q removemax removes the head of the list (Q(1) ).

§ Use a heap – both insert and removemax
are Q( log n ), introduced later

62



@ CS311, Hao Wang, SCU

Heap – a special binary tree
Heap: Complete Btree with the heap property:
§ Max-heap: each value in a node is no less than 

its children values
§ The values in the tree are partially ordered.

q The left child may less or greater than its right child

63



@ CS311, Hao Wang, SCU

Array-based Heap Implementation

§ Logic topology:
§ It is a complete 
binary tree
§ Tree height Q( log n ) 

64



@ CS311, Hao Wang, SCU

Array Implementation (1)
If a node is stored at array[r], where are its 

parent and children stored ?
§ Parent (r) = (r-1)/2 if r ≠ 0 and r < n.
§ Leftchild(r) =2r + 1 if 2r + 1 < n.
§ Rightchild(r) =2r + 2 if 2r + 2 < n.

65



@ CS311, Hao Wang, SCU

Heap -- insert
§ Add the element to the bottom level of the heap, 

i.e., Heap[n], then n++, suppose x=15
§ Compare the added element with its parent (shift 

up operation)
q if it is no greater than its parent, stop
q If not (i.e., larger), swap the element with its parent 

and return to the previous step
q Worst time complexity Q( log n )

66



@ CS311, Hao Wang, SCU

Heap -- removeMax
§ Replace the root of the heap with the last

element on the last level
§ Compare the new root with its children (shift 

down operation)
q if the new root is larger than its children, stop.
q If not, swap the element with its largest children, and 

return to the previous step
q Worst time complexity Q( log n )

67



@ CS311, Hao Wang, SCU

Build a Heap from an array 

§ Build from the middle to the first node in the 
array, perform a shift-down operation for each 
node

68



@ CS311, Hao Wang, SCU

Build a Heap from an array (cont.)

l Time complexity of building a heap is Q( n ), see 
the textbook for its analysis

69



@ CS311, Hao Wang, SCU

Huffman coding

§ Computers store data with bits 0 and 1
§ Assume that there are only three types of 

letters A, B, and C in a text
q letter A appears 98 times 
q both B and C appear only once
q there are 100 letters in the text

§ How to encode letters A, B, C, such that the 
total number of bits to represent the 100 
letters is minimized?

70



@ CS311, Hao Wang, SCU

Possible encoding solutions 

§ Solution 1: each letter is coded with two bits
q A: bits 00
q B: bits 01
q C: bits 10
q 98*2+1*2+1*2= 200 bits are needed

§ Solution 2: non-equal length encoding
q A: bit 0, as A appears more frequently
q B: bits 10
q C: bits 11
q 98*1 + 1*2 + 1*2 = 102 bits are needed!

71



@ CS311, Hao Wang, SCU

Huffman coding

§ Consider a general case with more than three 
letters ?

§ David Albert Huffman (1925–1999) solved the 
problem in 1952, when he was a Ph.D. student 
at MIT. 

§ This coding method is named by his family name 
§ Basic idea: assign short codes for frequent 

letters, but long codes for rare letters

72



@ CS311, Hao Wang, SCU

Huffman coding solution
1. Create n initial Huffman trees, each a single 

leaf node containing one of the letters.

2. Select the two trees with the lowest weights, 
create a new tree by joining them

q Its root has the two trees as children
q The root weight is the sum of the weights of the two 

trees

73



@ CS311, Hao Wang, SCU

Huffman coding solution – cont.

3. Continue Step 2 until only one tree is left

74



@ CS311, Hao Wang, SCU

Assign codes based on the final tree
§ Beginning at the root

q ‘0’ is assigned to edges linking a node with its left child
q ‘1’ to edges connecting a node with its right child

§ The code of each letter is the binary number on the path
from the root to its letter leaf node
q e.g., the code of letter C is 1110 

75



@ CS311, Hao Wang, SCU

Summary

§ We have discussed 
q the tree data-structure.
q Binary tree vs general tree
q Binary tree ADT

� Can be implemented using arrays or references
q Tree traversal

� Pre-order, in-order, post-order, and level-order
q Binary tree applications

q Binary search tree, heaps and priority queues, Huffman 
coding trees

76


