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Outline of Today's Lecture

§ Internal sorting
q Three basic sorting algorithms

� Insertion / bubble / selection sorts
q One medium sorting algorithms

� Shell sort
q Three fast sorting algorithms

� Merge / quick / heap sorts
q Two special cases

� Bin / radix sorts

§ External sorting

Θ(𝑛!)

Θ(𝑛".$)

Θ(𝑛 log 𝑛)

Θ(𝑛)
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Sorting

§ Motivation: Suppose the record of student 
consists of student name, ID, course name, 
score, we sort n students by their scores.

§ Given a set of records 𝑟1, 𝑟2, … , 𝑟! with key 
values 𝑘", 𝑘#, … , 𝑘!, the Sorting Problem is 
to arrange the records in non-decreasing 
order by their keys.

§ Measures of algorithm cost:
q Comparisons and Swaps are two main operations 

in sorting.
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Sorting terminology

§ Input is a set of records stored in an array.
§ A sorting algorithm is stable, if it does not 

change the relative ordering of records with 
identical key values. 

§ Internal sorting vs. External sorting
q In interval sorting, all records can be loaded into a 

computer memory
q External sorting, there are too many records to be 

sorted → cannot be loaded into the memory
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Internal Sorting Algorithms

§ Three Q(n2) sorting algorithms
q Insertion / bubble / selection sorts

§ Shell sort -- O(n1.5) in average case
§ Three quick sorting algorithms-- Q(n log n)

q Merge / quick / heap sorts 
§ Two Q(n) sorting algorithms for special cases 

of record keys
§ Lower bounds for sorting 
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Insertion Sort  (1)

§ Assume you have sorted the first i (e.g., i=2) 
numbers, consider the (i+1)th number 36, 
insert the number in order so that the first i+1
numbers are sorted.

Before insert： [27 53] 36 15 69 42

After insert： [27 36 53] 15 69 42
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i=1： [53] 27 36 15 69 42

i=2： [27 53] 36 15 69 42

i=3： [27 36 53] 15 69 42

i=4： [15 27 36 53] 69 42

i=5： [15 27 36 53 69] 42

[15 27 36 42 53 69]

Insertion Sort (2)
§ Traverse i from 1 to n-1, do the insertion
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Insertion Sort (3)

template <class E>
void insertSort(E A[], int n) {
for (int i=1; i<n; i++)
for (int j=i; j>0 && A[j] < A[j-1]; j--)
swap(A, j, j-1);

}
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Best Case Analysis of Insertion Sort

§ The best case occurs when the initial list of 
number are already sorted

§ Best Case: 0 swap, n - 1 comparisons

15 27 36 42 53 69
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Worst Case Analysis of Insertion Sort

§ The worst case occurs when the initial list of 
number are reversely sorted

§ At i-th iteration, performs i comparisons and 
swaps 

§ Total: Si = n2/2 swaps and comparisons

69 53 42 36 27 15
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Average Case Analysis of Insertion Sort

§ At i-th iteration, performs i/2 comparisons and 
swaps on average

§ Total: Si/2 = n2/4 swaps and comparisons

Before insert： [27 53] 36 15 69 42

After insert： [27 36 53] 15 69 42
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Insertion Sort

§ Best Case: 0 swap, n - 1 comparisons
§ Worst Case: n2/2 swaps and comparisons
§ Average Case: n2/4 swaps and comparisons
§ Insertion Sort is suitable for the cases where 

the records in the input array are almost
sorted, e.g., 
q Many records are already been sorted initially, but 

some a few new records are added
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Bubble Sort (1)
§ Scan from the bottom to the top, compare each 

adjacent values K[ j-1 ] and K[ j ], swap them if 
the  K[ j ] < K[ j-1 ]. After the scan, the smallest
value is at the top (bubble up) 

§ Do the 2nd scan from the bottom to the top-2
§ …
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Bubble Sort (2)
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Bubble Sort (3)

template <class E>
void bubbleSort(E A[], int n) {
for (int i=0; i<n-1; i++)
for (int j=n-1; j>i; j--)
if ( A[j] < A[j-1] )
swap(A, j, j-1);

}

§ Best Case: 0 swaps, n2/2 comparisons
§ Worst Case: n2/2 swaps and comparisons
§ Average Case: n2/4 swaps and n2/2 

comparisons
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Selection Sort

§ Basic idea: 
§ First, select the smallest value, store it at the 

first location in the array
§ Select the 2nd smallest value, store it at the 

2nd location in the array
§ …
§ The array is sorted after n iterations
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21 25*i = 0 25 1649 08

25 1608 25*49 21i = 1

49i = 2 08 16 25* 25 21

21 25 49 25* 16 08
0           1            2            3            4            5

initially

Min:08
Swap 21,08

Min: 16
Swap 25,16

Min: 21
Swap 49,21
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251608 25* 4921Final

0         1         2        3       4         5

4925*i = 3
08 16 2521

Min: 25*
No swap

Min: 25
No Swap

25*i = 4 4925211608
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Selection Sort (2)

template <class E>
void selectionSort(E A[], int n) {
for (int i=0; i<n-1; i++) {
int lowindex = i; // Remember its index
for (int j=n-1; j>i; j--) // Find least
if ( A[j] < A[ lowindex ])
lowindex = j; // Put it in place

swap(A, i, lowindex);
}

}

§ Best case: n-1 swaps, n2/2 comparisons.
§ Worst case: n - 1 swaps and n2/2 comparisons.
§ Average case: n-1 swaps and n2/2 comparisons.
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Summary of three Q(n2) sorting algorithms

Insertion Bubble Selection
Comparisons:
Best Case Q(n) Q(n2) Q(n2)
Average Case Q(n2) Q(n2) Q(n2)
Worst Case Q(n2) Q(n2) Q(n2)

Swaps:
Best Case 0 0 Q(n)
Average Case Q(n2) Q(n2) Q(n)
Worst Case Q(n2) Q(n2) Q(n)
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Running time comparisons (n=100k)
§ Random input

§ The input is already sorted

§ The input is reversely sorted
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Shell sort

§ Shellsort, named after its invertor, D.L. Shell.
q Sometimes called the diminishing increment sort.
q 𝑂(𝑛!.#) on average-case

§ Its strategy is to make the list "mostly sorted" 
so that a final Insertion Sort can finish the job.

§ Main steps:
q Break the list into sublists
q Sort them
q Then, recombine the sublists

22



@ CS311, Hao Wang, SCU

Shell sort process

§ During each iteration/pass, Shellsort breaks 
the list into disjoint sublists so that each 
element in a sublist is a fixed number of 
postions aparts. e.g., 
q Let us assume for convenience that n, the number 

of values to be sorted, is a power of two.
q Shellsort will begin by breaking the list into n/2 

sublists of 2 elements each, where the array index 
of the 2 elements in each sublist differs by n/2.
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Shell sort - an example (1)
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2nd pass
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Shell sort - an example (2)

§ Some choices for increments would make 
Shellsort run more efficiently.
q In particular, the choice of increments described 

above (2$ , 2$%!, … , 2,1) turns out to be relatively 
inefficient. 

q A better choice is the following series based on 
devision by three: (… , 121,40,13,4,1).
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Shellsort Implementation
// Modified version of Insertion Sort for varying increments
template <typename E, typename Comp>
void inssort2(E A[], int n, int incr) {
for (int i=incr; i<n; i+=incr)
for (int j=i; (j>=incr) &&

(Comp::prior(A[j], A[j-incr])); j-=incr)
swap(A, j, j-incr);

}

template <typename E, typename Comp>
void shellsort(E A[], int n) { // Shellsort
for (int i=n/2; i>2; i/=2) // For each increment
for (int j=0; j<i; j++) // Sort each sublist
inssort2<E,Comp>(&A[j], n-j, i);

inssort2<E,Comp>(A, n, 1);
}
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Three fast sorting algorithms

§ Heap sort
q Q(n log n) for the worst, best, average cases

§ Merge sort
q Q(n log n) for the worst, best, average cases

§ Quick sort
q Q(n log n) for the best and average cases
q Q(n2) for the worst case
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Heap – a special binary tree (Ch. II.5)
Heap: Complete binary tree with the heap 

property:
§ Max-heap: each value in a node is no less than 

its children values
§ The values in the tree are partially ordered.

q The left child may less or greater than its right child
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Heap Sort

§ Given an array, build a max-heap
§ Remove the maximum number from the heap
§ Remove the next maximum number
§ …
§ Continue until no numbers are left in the heap
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Heap -- removeMax
§ Replace the root of the heap with the last

element on the last level
§ Compare the new root with its children (shift 

down operation)
q if the new root is larger than its children, stop.
q If not, swap the element with its largest children, and 

return to the previous step
q Worst time complexity Q( log n )
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HeapSort Example (1)
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HeapSort Example (2)
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Heapsort

template <class E>
void heapSort(E A[], int n) { // Heapsort
E mval;
maxheap<E> H(A, n, n);
for (int i=0; i<n; i++) // Now sort
H.removemax(mval);     // Put max at end

}
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Analysis of Heap Sort

§ Build a heap takes time Q(n) 
§ Remove the maximum value takes Q(log n), 

as heap is a complete tree
§ Total time is Q(n) + n Q(log n) = Q(n log n)
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Merge Sort

§ Basic idea: divide and conquer
1. Given a list of numbers to be sorted
2. Split the list into two sub-lists with the 

identical length
3. Recursively sort the sub-lists, respectively
4. Merge the two sorted sub-lists
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Merge Sort

36
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Merge sort with an array-based list (1)

§ An array A[left, …,right], with the index range: 
left -- right

§ How to split ?
§ Let mid = (left + right)/2
§ Left sub-list = A[left,…,mid]
§ Right sub-list=A[mid+1,…, right]
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Merge Sort with an array-based list (2)
§ How to merge two sorted sub-lists A[left,…,mid], 

A[mid+1, …, right] ?

§ An extra array temp[left…, right] is needed

§ Step 1: move the smallest value of the first numbers 
of the two-sublists to array temp
q If one sub-list is exhausted, just move the first number of 

the other sublist
§ Continue until no numbers are left
§ Copy back: A[left,…, right]=temp[left,…,right]
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Merge Sort Implementation
template <class E>
void mergeSort(E A[], E temp[],

int left, int right) {
if (left == right) return; 
int mid = (left+right)/2;
mergesort<E>(A, temp, left, mid);
mergesort<E>(A, temp, mid+1, right);
//merge two sorted sublists
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1)      // Left exhausted
temp[curr] = A[i2++];

else if (i2 > right)  // Right exhausted
temp[curr] = A[i1++];

else if (A[i1] < A[i2]) 
temp[curr] = A[i1++];

else temp[curr] = A[i2++];
}
for (int i=left; i<=right; i++) // Copy back

A[i] = temp[i];
}
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Merge Sort based on a linked list (1)

§ How to split ?
§ Given a singly linked list of numbers
§ Need to scan half of numbers in the list
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How to merge two sorted sub-lists ?

§ Similar to the array-based version
§ But no extra memory is needed
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Time complexity of Merge Sort

§ Let T(n) be the running time for n numbers
§ Split: Q(1) for the array-based list
§ Recursively sorting two sub-lists: 2 * T(n/2)
§ Merge: Q(n)
§ T(n)= 2 T(n/2) + Q(n)
§ Expand the recurrence relationship, we have:
§ T(n)= Q(n log n)
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Quick Sort
§ Given an array of numbers A[left, …, right]
§ Pick a value in the array as a pivot

§ Partition the array into three parts

1. The numbers in the left part are < pivot 54
2. The pivot itself in place
3. The numbers in the right part are ≥ pivot 54
§ Recursively sort the left and right parts
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QuickSort Example
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Two key problems in Quick Sort
§ How to choose the pivot, such that the left 

and right parts are roughly balanced ?
q The number of records in the left part is more or 

less the number in the right part
§ How to efficiently partition an array by the 

pivot?
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Solutions to the choice of a pivot

1. Traditionally, choose the first or the last number 
in the array 

q This is bad if the given array are already (or nearly) 
sorted, or reversely sorted, one part has 0 number, 
the other part has (n-1) numbers

2. Choose the middle number 
q mid = (left+right)/2; pivot = A[mid];
q a better choice

3. median of three
q Choose the pivot as the median of the first, middle 

and last numbers
q Much better
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Solutions to the choice of a pivot

4. Randomly choose a number as the pivot
q It is unlikely that a randomly chosen number is the 

smallest or the largest ones
q Can combine with the 3rd solution, i.e., randomly

choose three numbers, and select the median of the 
three as the pivot
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Partition an array by a given pivot

§ Assume that the pivot is the median of the 
first, middle, and last numbers

§ First swap the pivot with the last number
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Partition an array by a given pivot

1. Start from the 1st location, search forward until we find a 
value ≥ pivot, e.g., 70 > 57

2. Start from the 2nd last location, search backward until 
we find a value < pivot, e.g., 49 < 57

3. 70 and 49 are out of order, swap them

§ We continue step1—step 3, see the next slides
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4. search forward until we find 97 ≥ 57
5. search backward until we find 16 < 57

6. Swap 97 and 16

7. search forward until we find 63 ≥ 57
8. search backward until we find 55 < 57

9. Swap 63 and 55

50



@ CS311, Hao Wang, SCU

10. search forward until we find 85 ≥ 57
11. search backward until we find 36 < 57

12. Swap 85 and 36

13. search forward until we find 68 ≥ 57
14. We search backward until we find 9 < 57

15. Swap 68 and 9
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16.search forward until we find 76 ≥ 57
17.search backward until we find 9 < 57

q The indices are out of order, stop

§ Move the first value larger than pivot, i.e., 76, to 
the last location of the array

§ Fill the empty location with the pivot 57
§ The pivot is in the correct location 
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Another example of the partition (animation)
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Time complexity of Quick Sort

§ Finding the pivot takes time Q(1)
§ Partitioning an array takes time Q(n)
§ Worst case time complexity

q For each partition, one part has 0 number, the 
other has n-1 numbers

q T(n)= Q(n) + T(n-1)
q T(n)= Q(n2)
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Time complexity of Quick Sort

§ Best case analysis
q The best case occurs if the left and right parts are 

balanced, each has about n/2 numbers
q T(n)= Q(n) + 2T(n/2)
q T(n)= Q(n log n)
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Average time complexity of quick sort
§ Consider all cases of the lengths of the two 

parts
q Left: 0 number, right: n-1 numbers
q Left: 1 number, right: n-2 numbers
q Left: 2 number, right: n-3 numbers
q …
q Left: n-1 number, right: 0 numbers

§ Assume the probabilities of different cases 
are equal, i.e., 1/n, we have
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Running time comparisons (n=100k)
§ Random input

§ The input is already sorted

§ The input is reversely sorted

58



@ CS311, Hao Wang, SCU

Running time comparisons (n=3M)
§ Random input

§ The input is already sorted

§ The input is reversely sorted

59



@ CS311, Hao Wang, SCU

Two Q(n) sorting algorithms

§ Only applicable for special cases, but not 
general cases

§ BinSort
§ Radix Sort
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BinSort Motivation

§ Consider n=5 integers to be sorted: 
q A[5]=1,  5, 4, 9,  2
q Notice that the maximum number is < 2n = 10

§ Allocate an array Bin[10]
§ Place A[i] to Bin[ A[i] ], e.g.,

q Place A[1] = 5 to Bin[5] by setting Bin[5] = 1
q The other values in Bin are 0

index   0   1     2    3    4     5    6    7    8    9
0 1    1    0 1    1     0    0    0    1
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BinSort Motivation
§ A[5]=1,  5, 4, 9,  2

§ BinSort has three steps:
1. Set Bin[ j ]=0 for 0≤j ≤9
2. Scan array A, set Bin[ A[i] ]=1 for 0≤i ≤5
3. Scan array Bin from the leftmost to rightmost, if 
Bin[ j ] = 1, number j is in array A, and output j
§ The output is the sequence:1, 2, 4, 5, 9

index   0   1     2    3    4     5    6    7    8    9
0 1    1    0 1    1     0    0    0    1
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Binsort
§ A[0, …, n-1],
§ Assume that A[i]≥0 and A[i] < c*n, c is a 

constant, e.g., c = 2
§ Allocate an array B with size c*n
for (j=0; j<c*n; j++)

B[j]=0;
for (i=0; i<n; i++)
++B[ A[i] ]; // may have duplicate numbers

i=0; // the ith sorted number
for (j=0; j<c*n; j++)//number j appears B[j] times
for (k=0; k<B[j]; k++, i++) 
A[i] = j;

§ Time complexity
q Q(cn) + Q(n)+ Q(cn+n) 
q = Q(cn) = Q(n), as c is a constant 
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The application of BinSort is limited

§ A[0, …, n-1],
§ BinSort is applicable when A[i] < c*n
§ Consider another example with n=9 numbers 

q 09, 85, 68, 86, 47, 06, 39, 34, 30
q The maximum number 86 is about 10 times 

larger than n,  ≥ n2=81
q If BinSort is applied, an array B with size 87 ≥ 

n2 is needed 
q The time complexity then is in W(n2)
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Radix Sort -- Extend BinSort

§ Some examples of radix or base
§ Radix 10: the values of each digit may be 0, 

1, 2, …, 9
q 510, 1610, 2010,…

§ Radix 2: each digit is 0 or 1
q 1012, 100002, 101002,…

§ Radix 26 (26 letters): a, b, c, …, x, y, z
q Strings `type’, ‘alpha’, `go’
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B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

09 85 68 86 47 06 39 34 30

09 8568

86

47

06

30

34

39

l Each number has two digits
l If we first sort by the highest digit:
l But the numbers in the same bin may be out of order

out of order out of order In order
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B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

09 85 68 86 47 06 39 34 30

l What if we first sort by the lowest digit
l We then collect the numbers in the bins
l The numbers with the same highest digit are in 

order, see the numbers with the same color

0985 6886 47

06 39

3430

30 34 85 86 06 47 68 09 39

67



@ CS311, Hao Wang, SCU

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

l We then sort the numbers by the highest digit
l Collect the numbers in the bins again 
l The numbers are in order now 

30 34 85 86 06 47 68 09 39

30

34

85

86

06 47 68

09

39In order
In order

In order

06 09 30 34 39 47 68 85 89
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RadixSort: sort from the lowest digit 
to the highest digit
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Radix Sort Cost

§ Consider n numbers A[0,1, …,n-1] with radix r, 
each number has no more than k digits

§ Has k BinSorts, from the lowest to the highest
§ Each sort takes time Q(n+r)
§ Total Cost: Q(k(n+r))
§ If n numbers are distinct, k >= logrn
§ If r is small, e.g., r=2, radixSort is in Q(n log n)
§ We usually use large values of r, e.g., r=1K, 1M, 

or even, n
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Running time comparisons (n=3M)

§ random input
§ RadixSort is faster if r is larger, 10 ≤r≤100k 
§ But does not improve any more when r

approaches to n
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Running time comparisons (n=3M)
§ The input is already sorted

q quickSort is faster than radixSort

§ The input is reversely sorted
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The limitation of RadixSort

§ Only applicable to sorting integers
§ But inapplicable for

q real numbers
q Strings has arbitrarily length 

� E.g., short string `a’, long string 
`dfdfldlfdfdfldjfdlfjslfjsdfdfdfdoojll’

q …
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Lower Bound for Sorting

§ We would like to know a lower bound for all 
possible sorting algorithms

§ Sorting is O(n log n) (average, worst cases) 
because we know algorithms with this upper 
bound, e.g., MergeSort or HeapSort

§ Sorting takes W(n) time, as each number must 
be accessed at least once

§ Is there any one better than Q (n log n) ?
§ It is proved that sorting is W(n log n)
§ MergeSort and HeapSort are asymptotically 

optimal ! 
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Chapter III-8. File Processing 
and External Sorting
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Primary vs. Secondary Storage

§ Primary storage: Main memory (RAM)
q volatile, i.e., data is lost if powered off
q Usually a few GB
q Expensive (unit: $/MB),  fast

§ Secondary Storage: Peripheral devices
q Hard Disk, Solid State Drive (SSD), USB, CD, 

Tape,…
q Non-volatile
q Hundreds of GB, or TB
q Cheap and slow
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Performance Comparisons (typical values) 

§ Performance of hard disks is terribly poor for 
random read and write

Sequential 
read

seq. 
write

Random 
read

Random 
write

RAM 5 GB/s 4 GB/s 300 MB/s 250 MB/s
Hard
Disk

80 MB/s 80 MB/s 0.3 MB/s 0.5 MB/s

SSD 200 MB/s 80 MB/s 25 MB/s 70 MB/s
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Golden Rule of File Processing

§ Minimize the number of disk accesses!
q Arrange information so that you get what you 

want with few disk accesses
� Store data on adjacent tracks, rather than randomly 

q Arrange information to minimize future disk 
accesses
� Cache 
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External Sorting

§ Problem: Sorting data sets too large to fit into 
main memory.
q Assume data are stored on disk drive.

§ To sort, portions of the data must be brought 
into main memory, processed, and returned 
to disk.

§ An external sort should minimize disk 
accesses.
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Model of External Computation

§As sequential access is much more efficient 
than random access to the file
q adjacent logical blocks of the file must be 

physically adjacent.
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External Sorting

§ Three Steps:
1. Break a large file into multiple small initial 

blocks, so that each block can be fit into 
memory

q E.g., break a 10 GB file into 10 blocks with each 
being 1 GB

2. Sorting the blocks by a fast internal sorting
algorithm one by one, and write back to hard 
disks

3. Merge the sorted blocks together to form a 
single sorted file.
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Multiway Merge 

§ Merge multiple blocks together, not just two 
blocks as the internal MergeSort
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Homework 3

§ See course webpage
§ Deadline: midnight before next lecture
§ Submit to: cs_scu@foxmail.com
§ File name format:

q CS311_Hw3_yourID_yourLastName.doc (or .pdf)
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