
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 9: Sorting

@ CS311, Hao Wang, SCU

Outline of Today's Lecture

§ Internal sorting
q Three basic sorting algorithms

� Insertion / bubble / selection sorts
q One medium sorting algorithms

� Shell sort
q Three fast sorting algorithms

� Merge / quick / heap sorts
q Two special cases

� Bin / radix sorts

§ External sorting

Θ(𝑛!)

Θ(𝑛".$)

Θ(𝑛 log 𝑛)

Θ(𝑛)

2

@ CS311, Hao Wang, SCU

Sorting

§ Motivation: Suppose the record of student
consists of student name, ID, course name,
score, we sort n students by their scores.

§ Given a set of records 𝑟1, 𝑟2, … , 𝑟! with key
values 𝑘", 𝑘#, … , 𝑘!, the Sorting Problem is
to arrange the records in non-decreasing
order by their keys.

§ Measures of algorithm cost:
q Comparisons and Swaps are two main operations

in sorting.

3

@ CS311, Hao Wang, SCU

Sorting terminology

§ Input is a set of records stored in an array.
§ A sorting algorithm is stable, if it does not

change the relative ordering of records with
identical key values.

§ Internal sorting vs. External sorting
q In interval sorting, all records can be loaded into a

computer memory
q External sorting, there are too many records to be

sorted → cannot be loaded into the memory

4

@ CS311, Hao Wang, SCU

Internal Sorting Algorithms

§ Three Q(n2) sorting algorithms
q Insertion / bubble / selection sorts

§ Shell sort -- O(n1.5) in average case
§ Three quick sorting algorithms-- Q(n log n)

q Merge / quick / heap sorts
§ Two Q(n) sorting algorithms for special cases

of record keys
§ Lower bounds for sorting

5

@ CS311, Hao Wang, SCU

Insertion Sort (1)

§ Assume you have sorted the first i (e.g., i=2)
numbers, consider the (i+1)th number 36,
insert the number in order so that the first i+1
numbers are sorted.

Before insert： [27 53] 36 15 69 42

After insert： [27 36 53] 15 69 42

6

@ CS311, Hao Wang, SCU

i=1： [53] 27 36 15 69 42

i=2： [27 53] 36 15 69 42

i=3： [27 36 53] 15 69 42

i=4： [15 27 36 53] 69 42

i=5： [15 27 36 53 69] 42

[15 27 36 42 53 69]

Insertion Sort (2)
§ Traverse i from 1 to n-1, do the insertion

7

@ CS311, Hao Wang, SCU

Insertion Sort (3)

template <class E>
void insertSort(E A[], int n) {
for (int i=1; i<n; i++)
for (int j=i; j>0 && A[j] < A[j-1]; j--)
swap(A, j, j-1);

}

8

@ CS311, Hao Wang, SCU

Best Case Analysis of Insertion Sort

§ The best case occurs when the initial list of
number are already sorted

§ Best Case: 0 swap, n - 1 comparisons

15 27 36 42 53 69

9

@ CS311, Hao Wang, SCU

Worst Case Analysis of Insertion Sort

§ The worst case occurs when the initial list of
number are reversely sorted

§ At i-th iteration, performs i comparisons and
swaps

§ Total: Si = n2/2 swaps and comparisons

69 53 42 36 27 15

10

@ CS311, Hao Wang, SCU

Average Case Analysis of Insertion Sort

§ At i-th iteration, performs i/2 comparisons and
swaps on average

§ Total: Si/2 = n2/4 swaps and comparisons

Before insert： [27 53] 36 15 69 42

After insert： [27 36 53] 15 69 42

11

@ CS311, Hao Wang, SCU

Insertion Sort

§ Best Case: 0 swap, n - 1 comparisons
§ Worst Case: n2/2 swaps and comparisons
§ Average Case: n2/4 swaps and comparisons
§ Insertion Sort is suitable for the cases where

the records in the input array are almost
sorted, e.g.,
q Many records are already been sorted initially, but

some a few new records are added

12

@ CS311, Hao Wang, SCU

Bubble Sort (1)
§ Scan from the bottom to the top, compare each

adjacent values K[j-1] and K[j], swap them if
the K[j] < K[j-1]. After the scan, the smallest
value is at the top (bubble up)

§ Do the 2nd scan from the bottom to the top-2
§ …

13

@ CS311, Hao Wang, SCU

Bubble Sort (2)

14

@ CS311, Hao Wang, SCU

Bubble Sort (3)

template <class E>
void bubbleSort(E A[], int n) {
for (int i=0; i<n-1; i++)
for (int j=n-1; j>i; j--)
if (A[j] < A[j-1])
swap(A, j, j-1);

}

§ Best Case: 0 swaps, n2/2 comparisons
§ Worst Case: n2/2 swaps and comparisons
§ Average Case: n2/4 swaps and n2/2

comparisons

15

@ CS311, Hao Wang, SCU

Selection Sort

§ Basic idea:
§ First, select the smallest value, store it at the

first location in the array
§ Select the 2nd smallest value, store it at the

2nd location in the array
§ …
§ The array is sorted after n iterations

16

@ CS311, Hao Wang, SCU

21 25*i = 0 25 1649 08

25 1608 25*49 21i = 1

49i = 2 08 16 25* 25 21

21 25 49 25* 16 08
0 1 2 3 4 5

initially

Min:08
Swap 21,08

Min: 16
Swap 25,16

Min: 21
Swap 49,21

17

@ CS311, Hao Wang, SCU

251608 25* 4921Final

0 1 2 3 4 5

4925*i = 3
08 16 2521

Min: 25*
No swap

Min: 25
No Swap

25*i = 4 4925211608

18

@ CS311, Hao Wang, SCU

Selection Sort (2)

template <class E>
void selectionSort(E A[], int n) {
for (int i=0; i<n-1; i++) {
int lowindex = i; // Remember its index
for (int j=n-1; j>i; j--) // Find least
if (A[j] < A[lowindex])
lowindex = j; // Put it in place

swap(A, i, lowindex);
}

}

§ Best case: n-1 swaps, n2/2 comparisons.
§ Worst case: n - 1 swaps and n2/2 comparisons.
§ Average case: n-1 swaps and n2/2 comparisons.

19

@ CS311, Hao Wang, SCU

Summary of three Q(n2) sorting algorithms

Insertion Bubble Selection
Comparisons:
Best Case Q(n) Q(n2) Q(n2)
Average Case Q(n2) Q(n2) Q(n2)
Worst Case Q(n2) Q(n2) Q(n2)

Swaps:
Best Case 0 0 Q(n)
Average Case Q(n2) Q(n2) Q(n)
Worst Case Q(n2) Q(n2) Q(n)

20

@ CS311, Hao Wang, SCU

Running time comparisons (n=100k)
§ Random input

§ The input is already sorted

§ The input is reversely sorted

21

@ CS311, Hao Wang, SCU

Shell sort

§ Shellsort, named after its invertor, D.L. Shell.
q Sometimes called the diminishing increment sort.
q 𝑂(𝑛!.#) on average-case

§ Its strategy is to make the list "mostly sorted"
so that a final Insertion Sort can finish the job.

§ Main steps:
q Break the list into sublists
q Sort them
q Then, recombine the sublists

22

@ CS311, Hao Wang, SCU

Shell sort process

§ During each iteration/pass, Shellsort breaks
the list into disjoint sublists so that each
element in a sublist is a fixed number of
postions aparts. e.g.,
q Let us assume for convenience that n, the number

of values to be sorted, is a power of two.
q Shellsort will begin by breaking the list into n/2

sublists of 2 elements each, where the array index
of the 2 elements in each sublist differs by n/2.

23

@ CS311, Hao Wang, SCU

Shell sort - an example (1)

24

1st pass

2nd pass

3rd pass

4th pass

@ CS311, Hao Wang, SCU

Shell sort - an example (2)

§ Some choices for increments would make
Shellsort run more efficiently.
q In particular, the choice of increments described

above (2$, 2$%!, … , 2,1) turns out to be relatively
inefficient.

q A better choice is the following series based on
devision by three: (… , 121,40,13,4,1).

25

@ CS311, Hao Wang, SCU

Shellsort Implementation
// Modified version of Insertion Sort for varying increments
template <typename E, typename Comp>
void inssort2(E A[], int n, int incr) {
for (int i=incr; i<n; i+=incr)
for (int j=i; (j>=incr) &&

(Comp::prior(A[j], A[j-incr])); j-=incr)
swap(A, j, j-incr);

}

template <typename E, typename Comp>
void shellsort(E A[], int n) { // Shellsort
for (int i=n/2; i>2; i/=2) // For each increment
for (int j=0; j<i; j++) // Sort each sublist
inssort2<E,Comp>(&A[j], n-j, i);

inssort2<E,Comp>(A, n, 1);
}

26

@ CS311, Hao Wang, SCU

Three fast sorting algorithms

§ Heap sort
q Q(n log n) for the worst, best, average cases

§ Merge sort
q Q(n log n) for the worst, best, average cases

§ Quick sort
q Q(n log n) for the best and average cases
q Q(n2) for the worst case

27

@ CS311, Hao Wang, SCU

Heap – a special binary tree (Ch. II.5)
Heap: Complete binary tree with the heap

property:
§ Max-heap: each value in a node is no less than

its children values
§ The values in the tree are partially ordered.

q The left child may less or greater than its right child

28

@ CS311, Hao Wang, SCU

Heap Sort

§ Given an array, build a max-heap
§ Remove the maximum number from the heap
§ Remove the next maximum number
§ …
§ Continue until no numbers are left in the heap

29

@ CS311, Hao Wang, SCU

Heap -- removeMax
§ Replace the root of the heap with the last

element on the last level
§ Compare the new root with its children (shift

down operation)
q if the new root is larger than its children, stop.
q If not, swap the element with its largest children, and

return to the previous step
q Worst time complexity Q(log n)

30

@ CS311, Hao Wang, SCU

HeapSort Example (1)

31

@ CS311, Hao Wang, SCU

HeapSort Example (2)

32

@ CS311, Hao Wang, SCU

Heapsort

template <class E>
void heapSort(E A[], int n) { // Heapsort
E mval;
maxheap<E> H(A, n, n);
for (int i=0; i<n; i++) // Now sort
H.removemax(mval); // Put max at end

}

33

@ CS311, Hao Wang, SCU

Analysis of Heap Sort

§ Build a heap takes time Q(n)
§ Remove the maximum value takes Q(log n),

as heap is a complete tree
§ Total time is Q(n) + n Q(log n) = Q(n log n)

34

@ CS311, Hao Wang, SCU

Merge Sort

§ Basic idea: divide and conquer
1. Given a list of numbers to be sorted
2. Split the list into two sub-lists with the

identical length
3. Recursively sort the sub-lists, respectively
4. Merge the two sorted sub-lists

35

@ CS311, Hao Wang, SCU

Merge Sort

36

@ CS311, Hao Wang, SCU

Merge sort with an array-based list (1)

§ An array A[left, …,right], with the index range:
left -- right

§ How to split ?
§ Let mid = (left + right)/2
§ Left sub-list = A[left,…,mid]
§ Right sub-list=A[mid+1,…, right]

37

@ CS311, Hao Wang, SCU

Merge Sort with an array-based list (2)
§ How to merge two sorted sub-lists A[left,…,mid],

A[mid+1, …, right] ?

§ An extra array temp[left…, right] is needed

§ Step 1: move the smallest value of the first numbers
of the two-sublists to array temp
q If one sub-list is exhausted, just move the first number of

the other sublist
§ Continue until no numbers are left
§ Copy back: A[left,…, right]=temp[left,…,right]

38

@ CS311, Hao Wang, SCU

Merge Sort Implementation
template <class E>
void mergeSort(E A[], E temp[],

int left, int right) {
if (left == right) return;
int mid = (left+right)/2;
mergesort<E>(A, temp, left, mid);
mergesort<E>(A, temp, mid+1, right);
//merge two sorted sublists
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1) // Left exhausted
temp[curr] = A[i2++];

else if (i2 > right) // Right exhausted
temp[curr] = A[i1++];

else if (A[i1] < A[i2])
temp[curr] = A[i1++];

else temp[curr] = A[i2++];
}
for (int i=left; i<=right; i++) // Copy back

A[i] = temp[i];
}

39

@ CS311, Hao Wang, SCU

Merge Sort based on a linked list (1)

§ How to split ?
§ Given a singly linked list of numbers
§ Need to scan half of numbers in the list

40

@ CS311, Hao Wang, SCU

How to merge two sorted sub-lists ?

§ Similar to the array-based version
§ But no extra memory is needed

41

@ CS311, Hao Wang, SCU

Time complexity of Merge Sort

§ Let T(n) be the running time for n numbers
§ Split: Q(1) for the array-based list
§ Recursively sorting two sub-lists: 2 * T(n/2)
§ Merge: Q(n)
§ T(n)= 2 T(n/2) + Q(n)
§ Expand the recurrence relationship, we have:
§ T(n)= Q(n log n)

42

@ CS311, Hao Wang, SCU

Quick Sort
§ Given an array of numbers A[left, …, right]
§ Pick a value in the array as a pivot

§ Partition the array into three parts

1. The numbers in the left part are < pivot 54
2. The pivot itself in place
3. The numbers in the right part are ≥ pivot 54
§ Recursively sort the left and right parts

43

@ CS311, Hao Wang, SCU

QuickSort Example

44

@ CS311, Hao Wang, SCU

Two key problems in Quick Sort
§ How to choose the pivot, such that the left

and right parts are roughly balanced ?
q The number of records in the left part is more or

less the number in the right part
§ How to efficiently partition an array by the

pivot?

45

@ CS311, Hao Wang, SCU

Solutions to the choice of a pivot

1. Traditionally, choose the first or the last number
in the array

q This is bad if the given array are already (or nearly)
sorted, or reversely sorted, one part has 0 number,
the other part has (n-1) numbers

2. Choose the middle number
q mid = (left+right)/2; pivot = A[mid];
q a better choice

3. median of three
q Choose the pivot as the median of the first, middle

and last numbers
q Much better

46

@ CS311, Hao Wang, SCU

Solutions to the choice of a pivot

4. Randomly choose a number as the pivot
q It is unlikely that a randomly chosen number is the

smallest or the largest ones
q Can combine with the 3rd solution, i.e., randomly

choose three numbers, and select the median of the
three as the pivot

47

@ CS311, Hao Wang, SCU

Partition an array by a given pivot

§ Assume that the pivot is the median of the
first, middle, and last numbers

§ First swap the pivot with the last number

48

@ CS311, Hao Wang, SCU

Partition an array by a given pivot

1. Start from the 1st location, search forward until we find a
value ≥ pivot, e.g., 70 > 57

2. Start from the 2nd last location, search backward until
we find a value < pivot, e.g., 49 < 57

3. 70 and 49 are out of order, swap them

§ We continue step1—step 3, see the next slides

49

@ CS311, Hao Wang, SCU

4. search forward until we find 97 ≥ 57
5. search backward until we find 16 < 57

6. Swap 97 and 16

7. search forward until we find 63 ≥ 57
8. search backward until we find 55 < 57

9. Swap 63 and 55

50

@ CS311, Hao Wang, SCU

10. search forward until we find 85 ≥ 57
11. search backward until we find 36 < 57

12. Swap 85 and 36

13. search forward until we find 68 ≥ 57
14. We search backward until we find 9 < 57

15. Swap 68 and 9

51

@ CS311, Hao Wang, SCU

16.search forward until we find 76 ≥ 57
17.search backward until we find 9 < 57

q The indices are out of order, stop

§ Move the first value larger than pivot, i.e., 76, to
the last location of the array

§ Fill the empty location with the pivot 57
§ The pivot is in the correct location

52

@ CS311, Hao Wang, SCU

Another example of the partition (animation)

53

@ CS311, Hao Wang, SCU

Time complexity of Quick Sort

§ Finding the pivot takes time Q(1)
§ Partitioning an array takes time Q(n)
§ Worst case time complexity

q For each partition, one part has 0 number, the
other has n-1 numbers

q T(n)= Q(n) + T(n-1)
q T(n)= Q(n2)

54

@ CS311, Hao Wang, SCU

Time complexity of Quick Sort

§ Best case analysis
q The best case occurs if the left and right parts are

balanced, each has about n/2 numbers
q T(n)= Q(n) + 2T(n/2)
q T(n)= Q(n log n)

55

@ CS311, Hao Wang, SCU

Average time complexity of quick sort
§ Consider all cases of the lengths of the two

parts
q Left: 0 number, right: n-1 numbers
q Left: 1 number, right: n-2 numbers
q Left: 2 number, right: n-3 numbers
q …
q Left: n-1 number, right: 0 numbers

§ Assume the probabilities of different cases
are equal, i.e., 1/n, we have

56

@ CS311, Hao Wang, SCU 57

@ CS311, Hao Wang, SCU

Running time comparisons (n=100k)
§ Random input

§ The input is already sorted

§ The input is reversely sorted

58

@ CS311, Hao Wang, SCU

Running time comparisons (n=3M)
§ Random input

§ The input is already sorted

§ The input is reversely sorted

59

@ CS311, Hao Wang, SCU

Two Q(n) sorting algorithms

§ Only applicable for special cases, but not
general cases

§ BinSort
§ Radix Sort

60

@ CS311, Hao Wang, SCU

BinSort Motivation

§ Consider n=5 integers to be sorted:
q A[5]=1, 5, 4, 9, 2
q Notice that the maximum number is < 2n = 10

§ Allocate an array Bin[10]
§ Place A[i] to Bin[A[i]], e.g.,

q Place A[1] = 5 to Bin[5] by setting Bin[5] = 1
q The other values in Bin are 0

index 0 1 2 3 4 5 6 7 8 9
0 1 1 0 1 1 0 0 0 1

61

@ CS311, Hao Wang, SCU

BinSort Motivation
§ A[5]=1, 5, 4, 9, 2

§ BinSort has three steps:
1. Set Bin[j]=0 for 0≤j ≤9
2. Scan array A, set Bin[A[i]]=1 for 0≤i ≤5
3. Scan array Bin from the leftmost to rightmost, if
Bin[j] = 1, number j is in array A, and output j
§ The output is the sequence:1, 2, 4, 5, 9

index 0 1 2 3 4 5 6 7 8 9
0 1 1 0 1 1 0 0 0 1

62

@ CS311, Hao Wang, SCU

Binsort
§ A[0, …, n-1],
§ Assume that A[i]≥0 and A[i] < c*n, c is a

constant, e.g., c = 2
§ Allocate an array B with size c*n
for (j=0; j<c*n; j++)

B[j]=0;
for (i=0; i<n; i++)
++B[A[i]]; // may have duplicate numbers

i=0; // the ith sorted number
for (j=0; j<c*n; j++)//number j appears B[j] times
for (k=0; k<B[j]; k++, i++)
A[i] = j;

§ Time complexity
q Q(cn) + Q(n)+ Q(cn+n)
q = Q(cn) = Q(n), as c is a constant

63

@ CS311, Hao Wang, SCU

The application of BinSort is limited

§ A[0, …, n-1],
§ BinSort is applicable when A[i] < c*n
§ Consider another example with n=9 numbers

q 09, 85, 68, 86, 47, 06, 39, 34, 30
q The maximum number 86 is about 10 times

larger than n, ≥ n2=81
q If BinSort is applied, an array B with size 87 ≥

n2 is needed
q The time complexity then is in W(n2)

64

@ CS311, Hao Wang, SCU

Radix Sort -- Extend BinSort

§ Some examples of radix or base
§ Radix 10: the values of each digit may be 0,

1, 2, …, 9
q 510, 1610, 2010,…

§ Radix 2: each digit is 0 or 1
q 1012, 100002, 101002,…

§ Radix 26 (26 letters): a, b, c, …, x, y, z
q Strings `type’, ‘alpha’, `go’

65

@ CS311, Hao Wang, SCU

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

09 85 68 86 47 06 39 34 30

09 8568

86

47

06

30

34

39

l Each number has two digits
l If we first sort by the highest digit:
l But the numbers in the same bin may be out of order

out of order out of order In order

66

@ CS311, Hao Wang, SCU

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

09 85 68 86 47 06 39 34 30

l What if we first sort by the lowest digit
l We then collect the numbers in the bins
l The numbers with the same highest digit are in

order, see the numbers with the same color

0985 6886 47

06 39

3430

30 34 85 86 06 47 68 09 39

67

@ CS311, Hao Wang, SCU

B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9]

l We then sort the numbers by the highest digit
l Collect the numbers in the bins again
l The numbers are in order now

30 34 85 86 06 47 68 09 39

30

34

85

86

06 47 68

09

39In order
In order

In order

06 09 30 34 39 47 68 85 89

68

@ CS311, Hao Wang, SCU

RadixSort: sort from the lowest digit
to the highest digit

69

@ CS311, Hao Wang, SCU

Radix Sort Cost

§ Consider n numbers A[0,1, …,n-1] with radix r,
each number has no more than k digits

§ Has k BinSorts, from the lowest to the highest
§ Each sort takes time Q(n+r)
§ Total Cost: Q(k(n+r))
§ If n numbers are distinct, k >= logrn
§ If r is small, e.g., r=2, radixSort is in Q(n log n)
§ We usually use large values of r, e.g., r=1K, 1M,

or even, n

70

@ CS311, Hao Wang, SCU

Running time comparisons (n=3M)

§ random input
§ RadixSort is faster if r is larger, 10 ≤r≤100k
§ But does not improve any more when r

approaches to n

71

@ CS311, Hao Wang, SCU

Running time comparisons (n=3M)
§ The input is already sorted

q quickSort is faster than radixSort

§ The input is reversely sorted

72

@ CS311, Hao Wang, SCU

The limitation of RadixSort

§ Only applicable to sorting integers
§ But inapplicable for

q real numbers
q Strings has arbitrarily length

� E.g., short string `a’, long string
`dfdfldlfdfdfldjfdlfjslfjsdfdfdfdoojll’

q …

73

@ CS311, Hao Wang, SCU

Lower Bound for Sorting

§ We would like to know a lower bound for all
possible sorting algorithms

§ Sorting is O(n log n) (average, worst cases)
because we know algorithms with this upper
bound, e.g., MergeSort or HeapSort

§ Sorting takes W(n) time, as each number must
be accessed at least once

§ Is there any one better than Q (n log n) ?
§ It is proved that sorting is W(n log n)
§ MergeSort and HeapSort are asymptotically

optimal !
74

@ CS311, Hao Wang, SCU

Chapter III-8. File Processing
and External Sorting

75

@ CS311, Hao Wang, SCU

Primary vs. Secondary Storage

§ Primary storage: Main memory (RAM)
q volatile, i.e., data is lost if powered off
q Usually a few GB
q Expensive (unit: $/MB), fast

§ Secondary Storage: Peripheral devices
q Hard Disk, Solid State Drive (SSD), USB, CD,

Tape,…
q Non-volatile
q Hundreds of GB, or TB
q Cheap and slow

76

@ CS311, Hao Wang, SCU

Performance Comparisons (typical values)

§ Performance of hard disks is terribly poor for
random read and write

Sequential
read

seq.
write

Random
read

Random
write

RAM 5 GB/s 4 GB/s 300 MB/s 250 MB/s
Hard
Disk

80 MB/s 80 MB/s 0.3 MB/s 0.5 MB/s

SSD 200 MB/s 80 MB/s 25 MB/s 70 MB/s

77

@ CS311, Hao Wang, SCU

Golden Rule of File Processing

§ Minimize the number of disk accesses!
q Arrange information so that you get what you

want with few disk accesses
� Store data on adjacent tracks, rather than randomly

q Arrange information to minimize future disk
accesses
� Cache

78

@ CS311, Hao Wang, SCU

External Sorting

§ Problem: Sorting data sets too large to fit into
main memory.
q Assume data are stored on disk drive.

§ To sort, portions of the data must be brought
into main memory, processed, and returned
to disk.

§ An external sort should minimize disk
accesses.

79

@ CS311, Hao Wang, SCU

Model of External Computation

§As sequential access is much more efficient
than random access to the file
q adjacent logical blocks of the file must be

physically adjacent.

80

@ CS311, Hao Wang, SCU

External Sorting

§ Three Steps:
1. Break a large file into multiple small initial

blocks, so that each block can be fit into
memory

q E.g., break a 10 GB file into 10 blocks with each
being 1 GB

2. Sorting the blocks by a fast internal sorting
algorithm one by one, and write back to hard
disks

3. Merge the sorted blocks together to form a
single sorted file.

81

@ CS311, Hao Wang, SCU

Multiway Merge

§ Merge multiple blocks together, not just two
blocks as the internal MergeSort

82

@ CS311, Hao Wang, SCU

Homework 3

§ See course webpage
§ Deadline: midnight before next lecture
§ Submit to: cs_scu@foxmail.com
§ File name format:

q CS311_Hw3_yourID_yourLastName.doc (or .pdf)

83

mailto:cs_scu@foxmail.com

