
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 9: Searching, and Hashing

@ CS311, Hao Wang, SCU

Outline of Today's Lecture

§ Searching
q Unsorted and Sorted Arrays
q Self-Organizing Lists
q Bit Vectors for Representing Sets

§ Hashing
q Hash Tables
q Hash Functions
q Open and Closed Hashing
q Operations

1

@ CS311, Hao Wang, SCU

Problem definition

§ Suppose we have a collection 𝐿 of 𝑛 records of the form
𝑘!, 𝐼! , 𝑘", 𝐼" , … , (𝑘#, 𝐼#), where 𝐼$ is information

associated with key 𝑘$ from record 𝑘$, 𝐼$ for 1 ≤ 𝑗 ≤ 𝑛.
§ Given a query 𝐾, the Search Problem is to locate a

record 𝑘%, 𝐼% in 𝐿 such that 𝑘% = 𝐾 (if one exists).

§ Two types of query problems
q An exact-match query is a search for the record whose

key values matches a specified key value.
q A range query is a search for all records whose key

value falls within a specified range of key values.

@ CS311, Hao Wang, SCU

Search algorithms

§ Three general approaches
q Sequential and list methods
q Direct access by key value -- hashing
q Tree indexing methods (next lecture)

3

@ CS311, Hao Wang, SCU

Search in unsorted arrays (1/2)

§ The sequential search algorithm
q Basic idea: search from the beginning to the end
q The simplest form of search

§ Best case: Q(1)
§ Worst case: Q(n)
§ Average case: Q(n/2)= Q(n)
§ Sometimes called linear search.

4

𝑘! 𝑘" … 𝑘#$! 𝑘#𝑘% …𝑲
𝑳

@ CS311, Hao Wang, SCU

Search in unsorted arrays (2/2)

§ A simple implementatin for sequential search

/* Find the position in A that holds value K, if any
does */

int sequential(int A[], int size, int K) {
for (int i=1; i<size; i++) // For each element

if (A[i] == K) // if we found it

return i; // return this position

return size; // Otherwise, return the array length

}

5

@ CS311, Hao Wang, SCU

Search in sorted arrays

§ Sequential search is somewhat slow. Q(n)
§ One way to reduce search time is to preprocess

the records by sorting them.
§ Given a sorted array, an obovious improvement

over simple linear search is to test if the current
element in 𝐿 is greate than 𝐾.

6

3 27 33 47 829 …9𝑲

𝑳
𝑘!

<

@ CS311, Hao Wang, SCU

Search in sorted arrays - Jump search (1/3)

§ Jump search
q Suppose we look first position 𝑖 and find that 𝐾 is

bigger, then we rule out position 𝑖 as well as
position 0 to 𝑖 − 1.

q What if we carry this to the extreme and look first
at the last position in L and find that K is bigger?
� Then we know in one comparison that K is not in L.

7

3 27 33 47 829 …47𝑲

𝑳
𝑘!

>

@ CS311, Hao Wang, SCU

Search in sorted arrays – Jump search (2/3)

§ Basic idea of Jump search algorithm
q For a jump size 𝑗, we check every 𝑗-th element in 𝐿.

q So long as K is greater than the checking values, we
continue on.

q Otherwise, we do a linear search on the piece of length j-1
that we know brackets K if it is in the list.

§ A typical divide and conquer algorithm.
§ What is the right amount to jump?

8

𝑘& … 𝑘%' … 𝑘#… 𝑘'𝑲

𝑳

@ CS311, Hao Wang, SCU

Search in sorted arrays - Jump search (3/3)

§ Define 𝑚 such that 𝑚𝑗 ≤ 𝑛 < 𝑚 + 1 𝑗, then the total
cost of this algorithm is at most 𝑚 + 𝑗 − 1 3-way
comparison. (3-way: less, equal, or greater)

§ Therefore, the cost to run the algorithm on 𝑛 items
with a jump of size 𝑗 is

§ Minimize the cost:
q Take the derivative and solve for 𝑇! 𝑛, 𝑗 = 0 to find the

minimum, which is 𝑗 = 𝑛.
§ In this case, the worst case cost is roughly 2 𝑛.

9

𝑇 𝑛, 𝑗 = 𝑚 + 𝑗 − 1 =
𝑛
𝑗
+ 𝑗 − 1

@ CS311, Hao Wang, SCU

Search in sorted arrays - Binary search (1/3)

§ Basic idea: recursion

10

@ CS311, Hao Wang, SCU

Search in sorted arrays - Binary search (2/3)

§ An optimal algorithm for a sorted list.
§ Time complexity: Q(log n)
§ If the data are not sorted, using binary search

requires to pay the cost of soring the data, e.g.,
Q(log n) by a balanced binary search tree (BST).

§ Two special forms of binary search (see book):
q Dictionary or interpolation search
q Quadratic binary search

@ CS311, Hao Wang, SCU

Performance Comparison (n=400M)

§ Running time of the sequential search is about 200 ms
§ Running time of the binary search is only 0.002 ms
§ Binary search is about 100,000 times faster for n=400M

@ CS311, Hao Wang, SCU

Self-organizing lists (1/6)

§ Self-organizing lists are simply linked-lists of data
q It reorganizes the data such that items that have been

accessed recently or more frequently, are moved
closer to the front of the list.

§ Motivation for sorting by access frequency
q Most searchable data sets contain some items that are

accedded frequently, and many items that are
accessed rarely.

q Can speed up sequential search.

13

@ CS311, Hao Wang, SCU

Self-organizing lists (2/6)

§ Usually, the frequencies are unknown.
§ Self-organizing lists use a heuristic for

deciding how to redorder the list.
q Similar to the rules for managing buffer pools.

E.g.,

14

@ CS311, Hao Wang, SCU

Self-organizing lists (3/6)

§ Basic ideas
q modify the order of records within the list based on

the actual pattern of record access, by moving a
found key nearer to the front of the list (insert and
delete operations can stay the same).

§ We consider three heuristics
q Frequency Count
q Move-To-Front
q Transpose

15

@ CS311, Hao Wang, SCU

Self-organizing lists (4/6)

§ Frequency Count
q When a record is

found, move forward
the front of the list if
its number of
accesses becomes
greater than a
record preceding it.

16

@ CS311, Hao Wang, SCU

Self-organizing lists (5/6)

§ Move-To-Front
q When a record is

found, move it to the
front of the list.

17

@ CS311, Hao Wang, SCU

Self-organizing lists (6/6)

§ Transpose
q When a record is

found, swap it with the
record ahead of it.

18

@ CS311, Hao Wang, SCU

Example: self-organizing lists

§ Text compression and transmission
q By the move-to-front rule
1. If the word has been seen before, transmit the

current position of the word in the list. Move the word
to the front of the list.

2. If the word is seen for the first time, transmit the
word. Place the word at the front of the list.

19

The car on the left hit the car I left

The car on 3 left hit 3 5 I 5

@ CS311, Hao Wang, SCU

Bit vectors for representing sets

§ Representing sets using a bit array with a bit
position allocated for each potential member.
q 1 denotes 'in the set'; 0 denote 'not in the set'.

§ Example: a set of primes

§ Benefits by the logical bit-wise operations
§ set union, intersection, and difference

20

@ CS311, Hao Wang, SCU

Hashing

21

@ CS311, Hao Wang, SCU

Hashing

Given n records with unique keys,
insert search delete

§ Unsorted list Q (1) Q(n) Q(n)
§ Sorted array Q (n) Q(log n) Q(n)
§ Balanced BST Q(log n) Q(log n) Q(log n)
§ Magic array Q (1) Q(1) Q(1)

Sufficient "magic":
q Use key to map array index for a record in Q (1) time
q Search by direct access based on key value

@ CS311, Hao Wang, SCU

Data collection

§ Data collection is a set of records (static or
dynamic)

§ Each record consists of two parts
q A key: a unique identifier of the record.
q Data item: it can be arbitrarily complex.

§ The key is usually a number, but can be a
string or any other data type.
q Non-numbers are converted to numbers when

applying hashing.

@ CS311, Hao Wang, SCU

Basic ideas of hashing

§ Use hash function to map keys into positions
in a hash table

Ideally
§ If data item or element e has key k and h is

hash function, then e is stored in position h(k)
of table

§ To search for e, compute h(k) to locate
position. If no element/item, dictionary does
not contain e.

@ CS311, Hao Wang, SCU

A simple Hash Table

§ The simplest kind of hash table is an array of
records (elements).

§ This example array has 701 cells.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

An array of cells

@ CS311, Hao Wang, SCU

Following the example

§ We want to store a dictionary of Object
Records, no more than 701 objects

§ Keys are Object ID numbers, e.g.,
506643548

§ Hash function: h(k) maps k(=ID) into distinct
table positions 0-700

§ Operations: insert, delete, and search

@ CS311, Hao Wang, SCU

Complexity (ideal case)

§ Why hashing and hash table?
q It is very efficient.

§ O(D) time to initialize hash table (D number
of positions or cells in hash table)

§ O(1) time to perform insert, remove, search

@ CS311, Hao Wang, SCU

Limitations of the Simple Hash Table

1. The maximum number in array A must be ≤
c*n, where c is constant

q Otherwise, the hash table may be too large
2. Keys must be integers

q But may be strings, real numbers, etc. in a
real application

@ CS311, Hao Wang, SCU

Hash Table and Hash Function
§ A hash table is an array of some fixed size, storing the

records
§ Each key is mapped into some location in the range 0 to

size-1 in the table
§ The mapping is called a hash function

size –1

hash function:
index = h(key)

hash table

key space (e.g., integers, strings)

0

…

@ CS311, Hao Wang, SCU

Use the Hash Table

§ Each record has a special field, i.e., its key.
§ In this example, the key is a long integer field

called Number.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

506643548

[4]

@ CS311, Hao Wang, SCU

Use the Hash Table

§ The number is a object's identification
number, and the rest of the record has
information about the object.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

506643548

[4]

@ CS311, Hao Wang, SCU

Use the Hash Table

§ When a hash table is in use, some spots
contain valid records, and other spots are
"empty".

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

…

@ CS311, Hao Wang, SCU

Inserting a New Record

§ In order to insert a new record, the key must
somehow be mapped to an array index using
a hash function.

§ The index is called the hash value of the key.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .

580625685

@ CS311, Hao Wang, SCU

Three design considerations of hash

1. Design a general hash function h(K) that maps
a record with key K to a location in hash table

2. Given any two records with keys K1 and K2, the
probability that they are mapped to the same
location in the hash table should be as small as
possible, i.e.,

q Pr[h(K1) = h(K1)] is very small
q Otherwise, many records are mapped to the same

location, which is called a collision
3. Solve the collision problem

@ CS311, Hao Wang, SCU

Hash functions

§ Popular hash functions: hashing by division
h(k) = k mod D, where D is number of cells in hash

table
§ Example: hash table with 701 cells

h(k) = k mod 701
h(80) = 80 mod 701 = 80
h(1000) = 1000 mod 701 = 299

@ CS311, Hao Wang, SCU

Hash Function design – a simple mod
function

§ Consider n=5 keys
q A[5]=11, 35, 54, 99, 42

§ Allocate an array Table[10] with size M=10
§ Hash function h(key) = key % 10
§ Place 11 at location 11%10=1 in hash table

§ But there may be many collisions
§ Consider other 5 keys

q B[5]=11, 21, 31, 41, 51
q Each key is mapped to location 1

36

index 0 1 2 3 4 5 6 7 8 9
11 42 54 35 99

@ CS311, Hao Wang, SCU

Hash Function design – a better hash
function

§ Consider n=5 keys
q B[5]=11, 21, 31, 41, 51

§ Allocate an array Table[10] with size M=10
§ Hash function by mid-square, given a key K,

q Location is the middle r digits of value K2
q 112=121, 212=441, 312=961, 412=1681, 512=2601
q Consider the middle digit, i.e., r=1

§ The location is correlated with all digits in the key,
not just the lowest digit.

37

index 0 1 2 3 4 5 6 7 8 9
51 11 21 31 41

@ CS311, Hao Wang, SCU

Hash function for a string-A simple way

§ Given a string of characters, e.g. “AZ”
§ First consider the ASCII value of each character

q E.g., 65 for “A”, 90 for “Z”
§ Then, sum up the ASCII values of the characters

q E.g., 65+90 = 155
§ Finally, mod M, where M is the size of the hash

table
q E.g., 155 %10 = 5;

§ String "AZ" is mapped to location 5 in the hash
table

@ CS311, Hao Wang, SCU

Collisions

§ Problem: collision
q two keys may be mapped to the same location
q Can we ensure that any two distinct keys get

different locations?
nNo, if the size of the key space is larger than

the size of the hash table

@ CS311, Hao Wang, SCU

Collisions - example

§ Suppose we insert a new record, with a hash
value of 2.

§ This is called a collision, because there is
already another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322. . .580625685

701466868

✘

@ CS311, Hao Wang, SCU

Collision Resolution Techniques

§ Two strategies:
q (1) Open hashing, a.k.a. separate chaining
q (2) Closed hashing, a.k.a. open addressing

§ Difference has to do with whether collisions
are stored outside the table (open hashing) or
whether collisions result in storing one of the
records at another slot in the table (closed
hashing).

@ CS311, Hao Wang, SCU

Open hashing / Separate Chaining

§ Instead of a hash table, use a table of linked list
§ keep a linked list of records with keys mapped to

the same location

h(K) = K mod 10

@ CS311, Hao Wang, SCU

Separate Chaining (cont.)

§ To search a record with key K
q Calculate h(K), takes Q (1) time
q Search the linked list at table[h[K]], which

takes Q (d) time, d is the list size

§ Average list size α= (
)
, n: # of records, m:

hash table size
§ Searching time is Q (1+α) on average

@ CS311, Hao Wang, SCU

Improve performance of separate
chaining

§ Searching time is Q (1+α) on average
§ α= ,

-
usually is called the load factor

§ When the α exceeds a threshold, e.g. 1.5,
double the table size

§ Rehash each record in the old table into the
new table

§ Then, the value of α decreases
§ Searching time is Q (1+α)= Q(1) on average

@ CS311, Hao Wang, SCU

Separate Chaining (cont.)

§ Advantage: implementation is easy for inserting,
searching, and deleting

§ Disadvantage: memory allocation for a new
node will slow down the program

@ CS311, Hao Wang, SCU

Closed hashing / Probing hash tables

§ Basic Idea:
q To insert a key K, compute h(K). If location h(K)

is empty, insert it there
q If a collision occurs, probe alternative locations

h1(K), h2(K), ..., until an empty location is found
§ hi(K) = (h(K) + f(i)) % TableSize,

q f(.): collision resolution strategy
§ All data are stored inside the table, hash table size

must be larger than the number of records
q i.e., m ≥ n
q Otherwise, no alternative locations can be found

@ CS311, Hao Wang, SCU

Probing hash tables

§ Three approaches
q Linear Probing
q Quadratic Probing
q Double Hashing

47

@ CS311, Hao Wang, SCU

Solution 1: Linear Probing

§ f is a linear function of i: i.e., f(i)=i
q Locations are probed sequentially
q hi(K) = (h(K) + i) % TableSize

§ Insertion:
q Let K be a new key to be inserted，compute

h(K) first
q For i = 0 to TableSize-1

� compute L = (h(K) + i) % TableSize
� Table[L] is empty, then we put K there and stop.

@ CS311, Hao Wang, SCU

Example of linear probing
§ hi(K) = (h(K) + i) %m

q E.g, inserting keys 89, 18, 49, 58, 69 with h(K)=K % 10
§ A clustering problem: small clusters grow to big clusters

To insert 58,
probe T[8], T[9],
T[0], T[1]

To insert 69,
probe T[9], T[0],
T[1], T[2]

To insert 49,
probe T[9], T[0]

@ CS311, Hao Wang, SCU

Solution 2: Quadratic Probing

§ f(i) = i2

§ hi(K) = (h(K)+ i2) % TableSize, e.g., h(K) = K % 10
q E.g., inserting keys 89, 18, 49, 58, 69

To insert 49,
probe T[9], T[0]

To insert 58,
probe T[8], T[9],
T[(8+22) mod 10]

To insert 69,
probe T[9],
T[(9+1) mod 10],
T[(9+22) mod 10]

@ CS311, Hao Wang, SCU

Quadratic Probing

§ Two keys with different initial hash locations will
have different probe sequences
q h(k1)=30, h(k2)=29, with difference only one
q probe sequence for k1: 30, 31, 34, 39, …
q probe sequence for k2: 29, 30, 33, 38,…

§ If the table size m is prime, then a new key can
always be inserted if the table is at least half
empty

@ CS311, Hao Wang, SCU

Solution 3: Double Hashing

§ Use two hash functions: h() and h2()
§ f(i) = i * h2(K)
§ hi(K)=(h(K)+f(i))%m

q E.g. h2(K) = R - (K mod R), with R is a prime
smaller than m

§ The probe sequence f(1),f(2),… is
independent of its initial location h(K)

@ CS311, Hao Wang, SCU

Double Hashing
§ hi(K)=(h(K)+f(i))%m; h(K)=K%m
§ f(i) = i * h2(K); h2(K) = R - (K mod R),
§ Example: m=10, R = 7 and insert keys 89, 18, 49, 58, 69

To insert 49,
h2(49)=7, 2nd
probe is T[(9+7)
mod 10]

To insert 58,
h2(58)=5, 2nd
probe is T[(8+5)
mod 10]

To insert 69,
h2(69)=1, 2nd
probe is T[(9+1)
mod 10]

@ CS311, Hao Wang, SCU

Choice of hash function h2()
§ h2(K)cannot be 0, as i*0=0
§ For any key K, h2(K)must be relatively prime to the

table size m. Otherwise, we may probe only a fraction of
the table entries.
q e.g., if h(K)=0 and h2(K) = m/2, (m is even), then we will

only examine entries Table[0], Table[m/2], and nothing
else!

§ One solution is to make m prime, and choose R to be a
prime smaller than m, and set

h2(K) = R – (K mod R)
§ Quadratic probing, however, does not require the use of

a second hash function
q likely to be simpler and faster in practice

@ CS311, Hao Wang, SCU

The performance of probing hash tables

§ Load factor α= #
+

≤1 as n ≤ m

§ Collision probability is α for each probe
§ Insert successfully at 1st probe with probability 1-α
§ Insert successfully at 2nd probe with prob. α(1-α)
§ Insert successfully at 3rd probe with prob. α2 (1-α)
§ …

§ Insert successfully at kth probe with prob. αk-1 (1-α)
§ Average probe times are !

1−α
§ Insert and search average time is Q (!

1−α) = Q(1) if α is
small, e.g., α=0.5

@ CS311, Hao Wang, SCU

Performance Comparison (n=400M)

§ Sequential search : 200 ms
§ Binary search: 0.002 ms
§ Hash search: < 0.001 ms

@ CS311, Hao Wang, SCU

Insert

§ Apply hash function to get a location

§ Try to insert key at the location

§ Deal with collision

@ CS311, Hao Wang, SCU

Inserting a New Record

§ Let us find the hash value for 580625685

What is (580625685 mod 701) ?

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .

580625685

@ CS311, Hao Wang, SCU

Inserting a New Record

§ Let us find the hash value for 580625685

580625685 mod 701 = 3

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .

580625685

3

@ CS311, Hao Wang, SCU

Inserting a New Record

The hash value is used to find the location of
the new record.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322. . .580625685

@ CS311, Hao Wang, SCU

Search

§ Apply the hash function to get a location
§ Look at that location.
§ Deal with collision.

@ CS311, Hao Wang, SCU

Searching for a Key

§ The data that's attached to a key can be
found fairly quickly.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .
580625685 701466868

701466868

@ CS311, Hao Wang, SCU

Searching for a Key

§ Calculate the hash value.
§ Check that location of the array for the key.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .
580625685 701466868

701466868

Not me.
The hash value of
701466868 is 2

@ CS311, Hao Wang, SCU

Searching for a Key

§ Keep moving forward until you find the key,
or you reach an empty spot.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .
580625685 701466868

701466868

Not me.

The hash value of
701466868 is 2

@ CS311, Hao Wang, SCU

Searching for a Key

§ Keep moving forward until you find the key,
or you reach an empty spot.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322. . .580625685 701466868

701466868

Not me.

The hash value of
701466868 is 2

@ CS311, Hao Wang, SCU

Searching for a Key

§ Keep moving forward until you find the key,
or you reach an empty spot.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .
580625685 701466868

701466868

Yes.

The hash value of
701466868 is 2

@ CS311, Hao Wang, SCU

Searching for a Key

§ When the item is found, the information can
be copied to the necessary location.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322

. . .
580625685 701466868

701466868

Yes.

The hash value of
701466868 is 2

@ CS311, Hao Wang, SCU

Deleting a Record

§ Records may also be deleted from a hash
table.

[0] [1] [2] [3] [4] [5] [700]
233667136 506643548 155778322580625685 701466868

Please
delete me.

. . .

@ CS311, Hao Wang, SCU

Deleting a Record

§ Records may also be deleted from a hash
table.

§ But the location must not be left as an
ordinary "empty spot" since that could
interfere with searches.

[0] [1] [2] [3] [4] [5] [700]
233667136 155778322580625685 701466868 . . .

@ CS311, Hao Wang, SCU

Deleting a Record

§ Records may also be deleted from a hash table.
§ But the location must not be left as an ordinary

"empty spot" since that could interfere with
searches.

§ The location must be marked in some special
way so that a search can tell that the spot used
to have something in it.

[0] [1] [2] [3] [4] [5] [700]
233667136 155778322580625685 701466868 . . .

@ CS311, Hao Wang, SCU

Conclusions
§ Sequential search: Q(n) on average

q improve to Q(𝑛) by Jump search with ordered arrays
§ Binary search: Q(log n)
§ Self-organizing lists, and Bit vectors
§ Hashing: Q(1) on average

q Hash table size usually is prime.
q Hash functions

� mod function, mid-square, sum for strings
q Collision solutions

1. Separating chaining
2. Probing hash tables
Ø linear probing, quadratic probing, double hashing

