
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 10: Indexing & Advanced Trees

@ CS311, Hao Wang, SCU

Outline

§ Indexing
q Linear index
q Tree-based index

� B-trees, B+-trees

§ Advanced Trees
q Tries
q Balanced trees

� AVL tree, Red-black tree, BB(𝛼) tree, Splay tree
q Spatial data structures

� K-D tree, PR quadtree

2

@ CS311, Hao Wang, SCU

Application limitations of Hash

§ Hash provides excellent performance for insert,
search, and delete, i.e.,
q Time complexity Q(1) on average

§ But hash has some application limitations:
1. Do not support duplicate keys
2. Only provide exact-search, but not range search

Ø E.g., search the students with their height between 1.7m and
1.75m

3. Do not support efficient searching the record with the
minimum or maximum key

3

@ CS311, Hao Wang, SCU

What is Index ?

§ Index provides following operations:
q efficient Insert (with duplicate keys): Q(log n)
q efficient exact-search: Q(log n)
q efficient range-search, time is related to the range, but

usually is much shorter than Q(n)
q Efficient minimum / maximum search: Q(log n)
q Efficient delete: Q(log n)

§ Index is designed for a large collection of
records stored on disks, where the disk access
time is much slower than memory access time.

4

@ CS311, Hao Wang, SCU

Linear indexing
§ A linear index is an index file organized as a sequence

of key-value pairs where the keys are in sorted order and
the pointers either
q (1) point to the position of the complete record on disk,
q (2) point to the position of the primary key in the primary index,
q or (3) are actually the value of the primary key.

Ø If the database contains enough records, the linear index might be
too large to store in main memory. -> expensive!

5

@ CS311, Hao Wang, SCU

Index techniques has many similarities
with BST

§ A binary search tree (BST) is a special binary tree, iff
q For each node, assume the node value is K
q The values of the nodes in its left subtree are < K
q The values of the nodes in its right subtree are ≥ K

6

@ CS311, Hao Wang, SCU

Index techniques

§ Two Tree-based indexing techniques:
q B trees
q B+ trees

§ Why not adopt a binary search tree (BST) for index?
q A BST may not be balanced

� E.g., One subtree has many nodes, while the other
has a few nodes, poor performance

q The depth of a balanced BST is still large
� Need about log2 n searches, and possible log2 n

times of disk accesses, while a disk access is very
time-consuming. This is unacceptable.

7

@ CS311, Hao Wang, SCU

B tree

§ B tree is a height Balanced tree.
§ A B tree of order 𝑚 is defined to have the

following properties:
q The root is has at least two children or either a leaf.
q Each node, except for the root and the leaves, has

between ém/2ù and m children.
� Typically, m will be fairly large, e.g., m=100

q All leaves are at the same level in the tree, so the
tree is always height balanced.

q The data values in each node are in ascending
order.

8

@ CS311, Hao Wang, SCU

Node insertion in a B tree

§ Insertion follows similar logic to the BST.
q Basic idea: search for the appropriate leaf, add the

new value, then split and promote as necessary.

1. Insert W (just fills the leaf),
2. Then insert X (would cause the right-most leaf to split, and V to

be promoted to the root),

E K Q

A D F G H M O P S T V

E K Q V

A D F G H M O P S T W X

Insert W then X

9

@ CS311, Hao Wang, SCU

Node deletion in a B tree

§ The process of node deletion is similar to that
in BST

§ Deletion from a Leaf node
q May drop the number of data values in the node

below the mandatory floor ("underflow").
� In this case, the leaf must borrow a value from an

adjacent sibling node if node have a value to spare, or be
merged with an adjacent sibling node.

§ Deletion from an Internal node
q Accomplished by reducing it to the former case.

10

@ CS311, Hao Wang, SCU

Search in a B tree

§ Main steps:
1. Perform a binary search on the records in the

current node.
q If a record with the search key is found, then return

that record.
q If the current node is a leaf node and the key is not

found, then report an unsuccessful search.
2. Otherwise, follow the proper branch and repeat

the process.

11

@ CS311, Hao Wang, SCU

B tree example: 2-3 tree, i.e., m = 3

§ Each internal nodes in a 2-3 tree has 2 or 3 children
q A node contains one or two keys
q All leaves are at the same level

§ The 2-3 Tree has a property analogous to the BST:
q left subtree < 1st key;
q 1st key ≤ mid subtree < 2nd key;
q right subtree ≥ 2nd key

12

@ CS311, Hao Wang, SCU

2-3 Tree
§ The advantage of the 2-3 Tree over the BST is that

it can be updated at low cost, e.g., insert 14

13

@ CS311, Hao Wang, SCU

2-3 Tree Insertion, insert 55
§ Split the node has keys 50 and 52, and
§ Promote the median of 50, 52, 55 to its parent

14

@ CS311, Hao Wang, SCU

2-3 Tree Insertion, insert 19

§ Split the node has 20,21, promote 20, to node has 23, 30
§ Then split node has 23,30, promote 23 to root has 18, 33

15

@ CS311, Hao Wang, SCU

2-3 Tree Insertion, insert 19

§ Split the root has18, 33 due to the insertion 23, and
§ promote 23, by creating a new root
§ The tree height increase by 1
§ But all leaves at the same level

16

@ CS311, Hao Wang, SCU

B+ Trees

§ The most commonly implemented form of the B-
Tree is the B+ Tree.

§ B+ tree stores records ONLY at the leaf nodes.
§ Internal nodes store keys to guild the search.
§ Leaf nodes store actual records, or else keys

and pointers to actual records.
§ A leaf node can store no more than m+1 records
§ B+ tree supports Q(1) time to search the

previous or next record, of a given record.

17

@ CS311, Hao Wang, SCU

B+ Trees (cont'd)

§ Define a B+ tree of order 𝑚 as follows:
q All data is stored at the leaf blocks
q The root nodes is either:

� A leaf block, or
� An 𝑚-way tree with between 2 and 𝑚 children

q All other internal blocks are 𝑚-way trees with ém/2ù to
𝑚 children
� The internal blocks store up to 𝑚 − 1 keys to guide the

searching where key 𝑘 denotes the smallest key in sub-tree 𝑘.

18

@ CS311, Hao Wang, SCU

B+-Tree Example with order m=4

§ Each internal node should have from ém/2ù
=2 to m=4 children

§ A leaf has no more than m+1= 5 records,
but at least é(m+1)/2ù=3 records

§ Nodes in the same level are linked in order

19

@ CS311, Hao Wang, SCU

B+-Tree Insertion

§ Insert 55
§ Similar the insertion in B tree

20

@ CS311, Hao Wang, SCU

B+-Tree Deletion (1) - delete 18

§ Just remove key 18 from its leaf node

21

@ CS311, Hao Wang, SCU

B+-Tree Deletion (2) - delete 12

§ Borrow one node 18 from its sibling to make it at
least 3 nodes

22

@ CS311, Hao Wang, SCU

B+-Tree Deletion - delete 33

§ Node having 33,45,47 cannot borrow from its
siblings, merge with its one sibling node 48,50,52

§ Node 48 has one less child, borrow one child from
its sibling node having 18,23, modify guide keys

23

@ CS311, Hao Wang, SCU

B* Trees

§ A variant of B+ trees
§ All nodes except the root are required to be

at least 2/3 full rather than 1/2 full.
§ Splitting transforms 2 nodes into 3, rather

than 1 node into 2.
§ Can be generalized to specify a fill factor of

(n+1)/(n+2); a Bn tree.

24

@ CS311, Hao Wang, SCU

B-Tree Analysis

§ Asymptotic cost of search, insertion, and
deletion of nodes from B-Trees is Q(log n).
q Base of the log is the (average) branching factor of the tree.

§ Example: Consider a B+-Tree of order 100 with leaf
nodes containing m=100 records.
q 1 level B+-tree: Min 0, Max 100
q 2 level: Min: 2 leaves of 50 (100 records). Max: 100 leaves

with 100 (10,000 records).
q 3 level: Min 2 x 50 nodes of leaves, for 5000 records. Max:

1003 = 1,000,000 records.
q 4 level: Min: 250,000 records (2 * 50 * 50 * 50). Max: 1004 =

100 million records.
25

@ CS311, Hao Wang, SCU

Advanced Tree Structures

26

@ CS311, Hao Wang, SCU

Advanced Tree Structures

1. Tries
2. Balanced trees

q AVL tree, Red-black tree, BB(𝛼) tree, Splay tree
3. Spatial data structures

q K-D tree
q PR quadtree

27

@ CS311, Hao Wang, SCU

1. Tries

§ Binary Search Tree (BST) is a data structure
based on object space decmposition.

§ Trie is a data structure based on key space
decomposition.

(a) Binary trie (b) alphabet trie

28

@ CS311, Hao Wang, SCU

2. Balanced Trees

§ Balanced may be defined by
q Height balanceing: comparing the heights of the

two sub trees
q Null-path-length balancing: comparing the null-

path-length of each of the two sub-trees (the
length to the closest null sub-tree/empty node)

q Weight balancing: comparing the number of null
sub-trees in each of the two sub trees

§ Balance will ensure the height is Θ(log 𝑛)

29

@ CS311, Hao Wang, SCU

Balanced trees - AVL tree

§ AVL trees use height balancing
q For every node, the heights of its left and right

subtrees differ by at most 1.

AVL trees with the height of 4

30

@ CS311, Hao Wang, SCU

Balanced trees - Red-black tree
§ Red-balack trees use null-path-length balancing

q All nodes are colored red or black (0 or 1)
q The root must be black
q All children of a red mode must be black
q Any path from the root to an empty node must have the same

number of black nodes
q Length: One sub-tree must not be greater than twice the other.

31

@ CS311, Hao Wang, SCU

Balanced trees - BB(𝛼) tree

§ BB(𝛼) trees (0 < 𝛼 ≤ 1/3) use weight balancing
q Neither side has less than a proportion 𝛼 of the empty

nodes, i.e., both proportions fall in [𝛼,1- 𝛼]

BB(5/10) trees

32

@ CS311, Hao Wang, SCU

Balanced trees - Splay tree

§ Splay tree falls into an average cost Θ(log 𝑛)
of per access operation.
q Access nodes could be rotated or splayed to the

root of the tree.

Splay tree single rotation

33

@ CS311, Hao Wang, SCU

3. Spatial data structures

§ Searching on a one-dimensional key
q BST, AVL tree, splay tree, 2-3 tree, B-tree, tries

§ Searching on multi-dimensional key
q Requires the use of spatial data structure

§ Spatial data structure store data objects in
two or more dimensions
q widely used in geographic information systems,

computer graphics, robitics, etc.

34

@ CS311, Hao Wang, SCU

3. Spatial data struectures (cont'd)

§ Two typical Spatial Data Structures
q K-D tree
q PR quadtree

35

@ CS311, Hao Wang, SCU

K-D tree

§ K-D tree is an extension of the BST to
multiple dimensions.
q It is a binary tree whose spliting decisions

alternate among the key dimensions.
q Like the BST, the K-D tree uses object space

decomposition.

36

@ CS311, Hao Wang, SCU

K-D tree (cont'd)

§ In a K-D tree, each level makes branching
decisions based on a particular search key
associated with that level.

37

@ CS311, Hao Wang, SCU

PR quadtree

§ PR (Point-Region) quadtree is a form of trie.
q It uses key space decomposition.
q It is a binary tree only for one-dimensional keys (in

which case it is a trie with a binary alphabet).
q For 𝑑 dimensions it has 2! branches. Thus, in two

dimensions, the PR quadtree has four branches
(hence the name "quadtree"), spliting space into
four equal-sized quadtrants at each branch.

38

@ CS311, Hao Wang, SCU

PR quadtree (cont'd)
§ In a PR quadtree, each node either has exactly

four children or is a leaf.
q A full four-way branching (4-ary) tree in shape.

39

@ CS311, Hao Wang, SCU

Summary

§ Indexing
q Tree-based index

� B trees, B+ trees,

§ Advanced Trees
q Tries
q Balanced trees

� AVL tree, Red-black tree, BB(𝛼) tree, Splay tree
q Spatial data structures

� K-D tree, PR quadtree

40

