Data Structures and Algorithms

Lecture 10: Indexing & Advanced Trees

@ CS311, Hao Wang, SCU

Outline

Indexing

- Linear index
- Tree-based index
 - B-trees, B⁺-trees
- Advanced Trees
 - Tries
 - Balanced trees
 - AVL tree, Red-black tree, BB(α) tree, Splay tree
 - Spatial data structures
 - K-D tree, PR quadtree

Application limitations of Hash

- Hash provides excellent performance for insert, search, and delete, i.e.,
 - Time complexity $\Theta(1)$ on average
- But hash has some application limitations:
 - 1. Do not support duplicate keys
 - 2. Only provide exact-search, but not range search
 - E.g., search the students with their height between 1.7m and 1.75m
 - 3. Do not support efficient searching the record with the minimum or maximum key

What is Index?

- Index provides following operations:
 - □ efficient Insert (with duplicate keys): ⊖(log n)
 - efficient exact-search: Θ(*log n*)
 - efficient range-search, time is related to the range, but usually is much shorter than Θ(n)
 - Efficient minimum / maximum search: Θ(*log n*)
 - Efficient delete: $\Theta(\log n)$
- Index is designed for a large collection of records stored on disks, where the disk access time is much slower than memory access time.

Linear indexing

- A linear index is an index file organized as a sequence of key-value pairs where the keys are in sorted order and the pointers either
 - (1) point to the position of the complete record on disk,
 - (2) point to the position of the primary key in the primary index,
 - or (3) are actually the value of the primary key.

Linear Index

Database Records

If the database contains enough records, the linear index might be too large to store in main memory. -> expensive!

Index techniques has many similarities with BST

- A binary search tree (BST) is a special binary tree, iff
 - For each node, assume the node value is K
 - The values of the nodes in its left subtree are < K</p>
 - The values of the nodes in its right subtree are $\ge K$

Index techniques

- Two Tree-based indexing techniques:
 - B trees
 - B+ trees
- Why not adopt a binary search tree (BST) for index?
 - A BST may not be balanced
 - E.g., One subtree has many nodes, while the other has a few nodes, poor performance
 - The depth of a balanced BST is still large
 - Need about log₂ n searches, and possible log₂ n times of disk accesses, while a disk access is very time-consuming. This is unacceptable.

B tree

- B tree is a height Balanced tree.
- A B tree of order m is defined to have the following properties:
 - The root is has at least two children or either a leaf.
 - Each node, except for the root and the leaves, has between m/2 and m children.
 - Typically, m will be fairly large, e.g., m=100
 - All leaves are at the same level in the tree, so the tree is always height balanced.
 - The data values in each node are in ascending order.

Node insertion in a B tree

- Insertion follows similar logic to the BST.
 - Basic idea: search for the appropriate leaf, add the new value, then split and promote as necessary.

- 1. Insert W (just fills the leaf),
- 2. Then insert **X** (would cause the right-most leaf to split, and **V** to be promoted to the root),

Node deletion in a B tree

- The process of node deletion is similar to that in BST
- Deletion from a Leaf node
 - May drop the number of data values in the node below the mandatory floor ("underflow").
 - In this case, the leaf must borrow a value from an adjacent sibling node if node have a value to spare, or be merged with an adjacent sibling node.
- Deletion from an Internal node
 - Accomplished by reducing it to the former case.

Search in a B tree

- Main steps:
- 1. Perform a binary search on the records in the current node.
 - If a record with the search key is found, then return that record.
 - If the current node is a leaf node and the key is not found, then report an unsuccessful search.
- 2. Otherwise, follow the proper branch and repeat the process.

B tree example: 2-3 tree, i.e., m = 3

Each internal nodes in a 2-3 tree has 2 or 3 children

A node contains one or two keys

All leaves are at the same level

The 2-3 Tree has a property analogous to the BST:

left subtree < 1st key;

□ 1st key ≤ mid subtree < 2nd key;

• right subtree $\geq 2^{nd}$ key

2-3 Tree

The advantage of the 2-3 Tree over the BST is that it can be updated at low cost, e.g., insert 14

2-3 Tree Insertion, insert 55

- Split the node has keys 50 and 52, and
- Promote the median of 50, 52, 55 to its parent

2-3 Tree Insertion, insert 19

- Split the node has 20,21, promote 20, to node has 23, 30
- Then split node has 23,30, promote 23 to root has 18, 33

2-3 Tree Insertion, insert 19

- Split the root has18, 33 due to the insertion 23, and
- promote 23, by creating a new root
- The tree height increase by 1
- But all leaves at the same level

B⁺ Trees

- The most commonly implemented form of the B-Tree is the B⁺ Tree.
- B⁺ tree stores records ONLY at the leaf nodes.
- Internal nodes store keys to guild the search.
- Leaf nodes store actual records, or else keys and pointers to actual records.
- A leaf node can store no more than m+1 records
- B+ tree supports O(1) time to search the previous or next record, of a given record.

B⁺ Trees (cont'd)

- Define a B+ tree of order m as follows:
 - All data is stored at the leaf blocks
 - The root nodes is either:
 - A leaf block, or
 - An *m*-way tree with between 2 and *m* children
 - All other internal blocks are *m*-way trees with *m/2* to *m* children
 - The internal blocks store up to m 1 keys to guide the searching where key k denotes the smallest key in sub-tree k.

B⁺-Tree Example with order m=4

- Each internal node should have from m/2
 =2 to m=4 children
- A leaf has no more than m+1= 5 records, but at least (m+1)/2 = 3 records
- Nodes in the same level are linked in order

B⁺-Tree Insertion

Insert 55

Similar the insertion in B tree

B⁺-Tree Deletion (1) - delete 18

Just remove key 18 from its leaf node

B⁺-Tree Deletion (2) - delete 12

 Borrow one node 18 from its sibling to make it at least 3 nodes

B⁺-Tree Deletion - delete 33

- Node having 33,45,47 cannot borrow from its siblings, merge with its one sibling node 48,50,52
- Node 48 has one less child, borrow one child from its sibling node having 18,23, modify guide keys

B* Trees

- A variant of B⁺ trees
- All nodes except the root are required to be at least 2/3 full rather than 1/2 full.
- Splitting transforms 2 nodes into 3, rather than 1 node into 2.
- Can be generalized to specify a fill factor of (n+1)/(n+2); a Bⁿ tree.

B-Tree Analysis

 Asymptotic cost of search, insertion, and deletion of nodes from B-Trees is Θ(log n).

Base of the log is the (average) branching factor of the tree.

- Example: Consider a B+-Tree of order 100 with leaf nodes containing m=100 records.
 - I level B+-tree: Min 0, Max 100
 - 2 level: Min: 2 leaves of 50 (100 records). Max: 100 leaves with 100 (10,000 records).
 - 3 level: Min 2 x 50 nodes of leaves, for 5000 records. Max: 100³ = 1,000,000 records.
 - 4 level: Min: 250,000 records (2 * 50 * 50 * 50). Max: 100⁴ = 100 million records.

Advanced Tree Structures

Advanced Tree Structures

- 1. Tries
- 2. Balanced trees
 - AVL tree, Red-black tree, BB(α) tree, Splay tree
- 3. Spatial data structures
 - K-D tree
 - PR quadtree

1. Tries

- Binary Search Tree (BST) is a data structure based on *object space decmposition*.
- Trie is a data structure based on key space decomposition.

2. Balanced Trees

- Balanced may be defined by
 - Height balanceing: comparing the heights of the two sub trees
 - Null-path-length balancing: comparing the nullpath-length of each of the two sub-trees (the length to the closest null sub-tree/empty node)
 - Weight balancing: comparing the number of null sub-trees in each of the two sub trees
- Balance will ensure the height is $\Theta(\log n)$

Balanced trees - AVL tree

- AVL trees use height balancing
 - For every node, the heights of its left and right subtrees differ by at most 1.

AVL trees with the height of 4

Balanced trees - Red-black tree

- Red-balack trees use null-path-length balancing
 - All nodes are colored red or black (0 or 1)
 - The root must be black
 - All children of a red mode must be black
 - Any path from the root to an empty node must have the same number of black nodes
 - Length: One sub-tree must not be greater than twice the other.

Balanced trees - $BB(\alpha)$ tree

- BB(α) trees ($0 < \alpha \le 1/3$) use weight balancing
 - Neither side has less than a proportion α of the empty nodes, i.e., both proportions fall in $[\alpha, 1-\alpha]$

Balanced trees - Splay tree

- Splay tree falls into an average cost O(log n) of per access operation.
 - Access nodes could be rotated or *splayed* to the root of the tree.

Splay tree single rotation

3. Spatial data structures

- Searching on a one-dimensional key
 BST, AVL tree, splay tree, 2-3 tree, B-tree, tries
- Searching on multi-dimensional key
 Requires the use of spatial data structure
- Spatial data structure store data objects in two or more dimensions
 - widely used in geographic information systems, computer graphics, robitics, etc.

3. Spatial data struectures (cont'd)

- Two typical Spatial Data Structures
 - K-D tree
 - PR quadtree

K-D tree

- K-D tree is an extension of the BST to multiple dimensions.
 - It is a binary tree whose spliting decisions alternate among the key dimensions.
 - Like the BST, the K-D tree uses object space decomposition.

K-D tree (cont'd)

 In a K-D tree, each level makes branching decisions based on a particular search key associated with that level.

PR quadtree

- PR (Point-Region) quadtree is a form of trie.
 - It uses key space decomposition.
 - It is a binary tree only for one-dimensional keys (in which case it is a trie with a binary alphabet).
 - For d dimensions it has 2^d branches. Thus, in two dimensions, the PR quadtree has four branches (hence the name "quadtree"), spliting space into four equal-sized quadtrants at each branch.

PR quadtree (cont'd)

- In a PR quadtree, each node either has exactly four children or is a leaf.
 - A full four-way branching (4-ary) tree in shape.

Summary

- Indexing
 - Tree-based index
 - B trees, B⁺ trees,
- Advanced Trees
 - Tries
 - Balanced trees
 - AVL tree, Red-black tree, BB(α) tree, Splay tree
 - Spatial data structures
 - K-D tree, PR quadtree