Data Structures and

Algorithms

Lecture 10: Indexing & Advanced Trees

@ CS311, Hao Wang, SCU

Outline

Indexing
Linear index
Tree-based index
B-trees, B*-trees
Advanced Trees
Tries

Balanced trees
AVL tree, Red-black tree, BB(«) tree, Splay tree

Spatial data structures
K-D tree, PR quadtree

(@ CS311, Hao Wang, SCU

Application limitations of Hash

Hash provides excellent performance for insert,
search, and delete, i.e.,

Time complexity ®(7) on average

But hash has some application limitations:

Do not support duplicate keys

Only provide exact-search, but not range search

E.g., search the students with their height between 1.7m and
1.75m

Do not support efficient searching the record with the
minimum or maximum key

(@ CS311, Hao Wang, SCU

What 1s Index ?

Index provides following operations:
efficient Insert (with duplicate keys): ®(/og n)
efficient exact-search: ®(/og n)

efficient range-search, time is related to the range, but
usually is much shorter than ®(n)

Efficient minimum / maximum search: ®(/og n)
Efficient delete: ®(/og n)

Index is designed for a large collection of
records stored on disks, where the disk access
time is much slower than memory access time.

(@ CS311, Hao Wang, SCU 4

Linear indexing

A linear index is an index file organized as a sequence
of key-value pairs where the keys are in sorted order and
the pointers either
(1) point to the position of the complete record on disk,
(2) point to the position of the primary key in the primary index,
or (3) are actually the value of the primary key.
Linear Index

37 42 52 73 98

' I i l

73 52 o8 37| 42

Database Records

> If the database contains enough records, the linear index might be
foo large to store in main memory. -> expensive!

(@ CS311, Hao Wang, SCU 5

Index techniques has many similarities

with BST

A binary search tree (BST) is a special binary tree, iff
For each node, assume the node value is K
The values of the nodes in its left subtree are <K
The values of the nodes in its right subtree are = K

—
—
—
—

(@ CS311, Hao Wang, SCU

Index techniques

Two Tree-based indexing techniques:
B trees
B+ trees

Why not adopt a binary search tree (BST) for index?
A BST may not be balanced

E.g., One subtree has many nodes, while the other
has a few nodes, poor performance

The depth of a balanced BST is still large

Need about /og, n searches, and possible log, n
times of disk accesses, while a disk access is very
time-consuming. This is unacceptable.

(@ CS311, Hao Wang, SCU 7

B tree

B tree is a height Balanced tree.

A B tree of order m is defined to have the
following properties:

The root is has at least two children or either a leaf.

Each node, except for the root and the leaves, has
between | m/2 | and m children.

Typically, m will be fairly large, e.g., m=100
All leaves are at the same level in the tree, so the
tree is always height balanced.

The data values in each node are in ascending
order.

(@ CS311, Hao Wang, SCU 8

Node insertion in a B tree

Insertion follows similar logic to the BST.

Basic idea: search for the appropriate leaf, add the
new value, then split and promote as necessary.

E(K|Q Insert W then X E|(K|Q|V
—>
D F|G|H M|O|P s(T|v A|D F|G|H M|O|P S|T W[X

1. Insert W (just fills the leaf),
2. Then insert X (would cause the right-most leaf to split, and V to
be promoted to the root),

(@ CS311, Hao Wang, SCU

Node deletion 1n a B tree

The process of node deletion is similar to that
in BST

Deletion from a Leaf node

May drop the number of data values in the node
below the mandatory floor ("underflow").

In this case, the leaf must borrow a value from an
adjacent sibling node if node have a value to spare, or be
merged with an adjacent sibling node.

Deletion from an Internal node
Accomplished by reducing it to the former case.

(@ CS311, Hao Wang, SCU 10

Search in a B tree

Main steps:

Perform a binary search on the records in the
current node.

If a record with the search key is found, then return
that record.

If the current node is a leaf node and the key is not
found, then report an unsuccessful search.
Otherwise, follow the proper branch and repeat
the process.

(@ CS311, Hao Wang, SCU 11

B tree example: 2-3 tree, t.e., m = 3

Each internal nodes in a 2-3 tree has 2 or 3 children
A node contains one or two keys
All leaves are at the same level

The 2-3 Tree has a property analogous to the BST-:
left subtree < 15t key;
15t key < mid subtree < 2" key;
right subtree = 24 key

18 [33

12 —| 23 30 |:8

« (10 15 20 | 21 24 31 45 | 47 20 92}

2-3 Tree

The advantage of the 2-3 Tree over the BST is that

it can be updated at low cost, e.g., insert 14

18 |33
12 23 | 30 48
10 15 20 | 21 24 31 45 47| |50|52
18 |33
12 23 | 30 48
10 18|15 20 21| |24 31 45|47 | |50|52
14

(@ CS311, Hao Wang, SCU

13

2-3 Tree Insertion, insert 55

Split the node has keys 50 and 52, and
Promote the median of 50, 52, 55 to its parent

18 |33
12 23|30 48
10 15 20 | 21 24 31 45 | 47 50 | 52
18 | 33
12 23|30 48 52L
I______I:_ ___—I
10 15 2021 |24 31 45 |47 |,| 50 ' 55 |

—_— e —_— —_

(@ CS311, Hao Wang, SCU 14

2-3 Tree Insertion, insert 19

12

10

15

18

33

23

30

48

20| 21

24

31

45

47

50

52

Split the node has 20,21, promote 20, to node has 23, 30
Then split node has 23,30, promote 23 to root has 18, 33

‘ 18 33\
/ \
20 23130
19 21 24 31

20

23

A

30

119

21

24

31

15

2-3 Tree Insertion, insert 19

Split the root has18, 33 due to the insertion 23, and

promote 23, by creating a new root
The tree height increase by 1

But all leaves at the same level

18

12

23

20

33

30

48

10 15

19

21

24

31

45

47

50

52

(@ CS311, Hao Wang, SCU

16

B* Trees

The most commonly implemented form of the B-
Tree is the B* Tree.

B* tree stores records ONLY at the leaf nodes.
Internal nodes store keys to guild the search.

Leaf nodes store actual records, or else keys
and pointers to actual records.

A leaf node can store no more than m+1 records

B+ tree supports ®(1) time to search the
previous or next record, of a given record.

(@ CS311, Hao Wang, SCU 17

B™ Trees (cont'd)

Define a B+ tree of order m as follows:

All data is stored at the leaf blocks

The root nodes is either:
A leaf block, or
An m-way tree with between 2 and m children

All other internal blocks are m-way trees with | m/2 | to
m children

The internal blocks store up to m — 1 keys to guide the
searching where key k denotes the smallest key in sub-tree k.

(@ CS311, Hao Wang, SCU 18

B"-Tree Example with order m=4

Each internal node should have from [m/2|
=2 to m=4 children

A leaf has no more than m+1= 5 records,
but at least | (m+1)/2 |=3 records
Nodes in the same level are linked in order

33

/\
\

148

/

1012 15 18 19 20 21 22 23 30 31 — 33 45 47 —48 50 52

18 (2

(@ CS311, Hao Wang, SCU 19

B™-Tree Insertion

= Insert 55

= Similar the insertion in B tree

1012233348

33

/

(@)

101223

334850

(@ CS311, Hao Wang, SCU

20

B"-Tree Deletion (1) - delete 18

Just remove key 18 from its leaf node

33
18 [23 - {48
10 1215 —18 19 20 21 22 23 30 31 — 33 45 47 —48 50 52
33
/ \
18|23 - > 48
101215 19202122 23 30 31 —33 45 47 —48 50 52

(@ CS311, Hao Wang, SCU

B"-Tree Deletion (2) - delete 12

Borrow one node 18 from its sibling to make it at
least 3 nodes

33
18 [23 - {48
10 1215 —18 19 20 21 22— 23 30 31 — 33 45 47 —48 50 52
33
/ \
19|23 - »148
101518 — 19202122 2330 31 —33 4547 — 48 50 52

(@ CS311, Hao Wang, SCU 22

:

BT -Tree Deletion - delete 33

Node having 33,45,47 cannot borrow from its

siblings, merge with its one sibling node 48,50,52

Node 48 has one less child, borrow one child from
its sibling node having 18,23, modify guide keys

33

18 |23 - »148
1012 15 18 19 20 21 22]{23 30 31 33 45 47 |48 50 52
23
— 18 - »|33
/’/)
_- / -
4547485052 — / —
101215 -11819202122]= |23 30 31 4547485052

(@) (b)

(@ CS311, Hao Wang, SCU 23

B* Trees

A variant of B* trees

All nodes except the root are required to be
at least 2/3 full rather than 1/2 full.

Splitting transforms 2 nodes into 3, rather
than 1 node into 2.

Can be generalized to specify a fill factor of
(n+1)/(n+2); a B" tree.

@ CS311, Hao Wang, SCU

B-Tree Analysis

Asymptotic cost of search, insertion, and
deletion of nodes from B-Trees is ®(log n).

Base of the log is the (average) branching factor of the tree.

Example: Consider a B+-Tree of order 100 with leaf
nodes containing m=100 records.

1 level B+-tree: Min 0, Max 100

2 level: Min: 2 leaves of 50 (100 records). Max: 100 leaves
with 100 (10,000 records).

3 level: Min 2 x 50 nodes of leaves, for 5000 records. Max:
1003 = 1,000,000 records.

4 level: Min: 250,000 records (2 * 50 * 50 * 50). Max: 100% =
100 million records.

(@ CS311, Hao Wang, SCU

25

Advanced Tree Structures

@ CS311, Hao Wang, SCU

26

Advanced Tree Structures

Tries

Balanced trees
AVL tree, Red-black tree, BB(a) tree, Splay tree

Spatial data structures

K-D tree
PR quadtree

(@ CS311, Hao Wang, SCU

27

1. Tries

Binary Search Tree (BST) is a data structure
based on object space decmposition.

Trie is a data structure based on key space
decomposition.

horse

goat goldfish goose

anteater antelope

(a) Binary trie (b) alphabet trie

(@ CS311, Hao Wang, SCU 28

2. Balanced Trees

Balanced may be defined by

Height balanceing. comparing the heights of the
two sub trees

Null-path-length balancing: comparing the null-
path-length of each of the two sub-trees (the
length to the closest null sub-tree/empty node)

Weight balancing. comparing the number of null
sub-trees in each of the two sub trees

Balance will ensure the height is ©(logn)

(@ CS311, Hao Wang, SCU 29

Balanced trees - AVL tree

AVL trees use height balancing

For every node, the heights of its left and right
subtrees differ by at most 1.

AVL trees with the height of 4

(@ CS311, Hao Wang, SCU 30

‘ Balanced trees - Red-black tree

Red-balack trees use null-path-length balancing
All nodes are colored red or black (0 or 1)
The root must be black

All children of a red mode must be black

Any path from the root to an empty node must have the same
number of black nodes

Length: One sub-tree must not be greater than twice the other.

@ CS311, Hao Wang, SCU 31

Balanced trees - BB(@) tree

BB(a) trees (0 < a < 1/3) use weight balancing

Neither side has less than a proportion a of the empty
nodes, i.e., both proportions fall in [a,1- a]

BB(5/10) trees

(@ CS311, Hao Wang, SCU 32

Balanced trees - Splay tree

Splay tree falls into an average cost O(logn)
of per access operation.

Access nodes could be rotated or splayed to the
root of the tree.

() (S
(S) O\ = A\ ()
A B B C
(a) (b)

Splay tree single rotation

(@ CS311, Hao Wang, SCU 33

3. Spatial data structures

Searching on a one-dimensional key
BST, AVL tree, splay tree, 2-3 tree, B-tree, tries

Searching on multi-dimensional key

Requires the use of spatial data structure
Spatial data structure store data objects in
two or more dimensions

widely used in geographic information systems,
computer graphics, robitics, etc.

(@ CS311, Hao Wang, SCU 34

3. Spatial data struectures (cont'd)

Two typical Spatial Data Structures

K-D tree
PR quadtree

(@ CS311, Hao Wang, SCU

35

K-D tree

K-D tree is an extension of the BST to
multiple dimensions.

It is a binary tree whose spliting decisions
alternate among the key dimensions.

Like the BST, the K-D tree uses object space
decomposition.

(@ CS311, Hao Wang, SCU

36

K-D tree (cont'd)

In a K-D tree, each level makes branching
decisions based on a particular search key
associated with that level.

C
»
) G
?A oD | v
B (15, 70)
& X o m ool
B
—————o
E 4 y __________________________
F E (66, 85) F (85, 90)
(a) (b)

(@ CS311, Hao Wang, SCU 37

PR quadtree

PR (Point-Region) quadtree is a form of trie.
It uses key space decomposition.

It is a binary tree only for one-dimensional keys (in
which case it is a trie with a binary alphabet).

For d dimensions it has 2¢ branches. Thus, in two
dimensions, the PR quadtree has four branches
(hence the name "quadtree"), spliting space into
four equal-sized quadtrants at each branch.

(@ CS311, Hao Wang, SCU 38

PR quadtree (cont'd)

In a PR quadtree, each node either has exactly

four children or is a leaf.
A full four-way branching (4-ary) tree in shape.
0 127

0 . O
C
A A
° o (40,45)
D
° C D
B lo E (70, 10) (69,50)
E []
E F
(55,80)(80, 90)

127
(b)

(@ CS311, Hao Wang, SCU 39

Summary

Indexing
Tree-based index
B trees, B* trees,

Advanced Trees

Tries

Balanced trees
AVL tree, Red-black tree, BB(a) tree, Splay tree

Spatial data structures
K-D tree, PR quadtree

(@ CS311, Hao Wang, SCU

40

