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1. Graphs have wide, wide applications
n Modeling relationships (families, organizations)

pe.g., Model friendships in social networks
n Modeling connectivity in computer networks
n Representing maps

pE.g., google map
n Finding paths from start to goal
n …
n Binary trees, B trees, B+ trees are special

graphs



2. Notations in Graphs

n Unweighted graph vs. weighted graph
n Undirected graph vs. directed graph
n Degrees 
n Path and cycle
n Path length
n Connectivity 
n Connected components 
n Acyclic directed graph

Graph 
properties

The importance of vertices in a graph

Relationship 
between 
vertices in a 
graph



Definition of an unweighted graph
n A graph G = (V, E) consists of a set V of vertices, 

and a set of edges E, such that each edge in E is 
a connection between a pair of vertices in V
pn=|V|, m=|E|

n Example: given the vertices
V = {v1, v2, v3, v4}

and the edges
E = {{v1, v2}, {v1, v3}, {v3, v4}}

the graph has three edges connecting four 
vertices



Weighted Graphs
n Each edge may be associated with a weight 
n This could represent distance, time, energy 

consumption, cost, etc



Directed Graphs
n Each edge in a graph may be associated with a 

direction
n An edge from vi to vj does not imply an edge from vj to 
vi

n All edges are ordered pairs (vi, vj) where this denotes 
a connection from vi to vj

n Such a graph is termed a directed graph
n For example, 

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (4, 3)}



Directed Graphs
n If there is an edge from vi to vj and an edge 

from vj to vi , plotted as 

8



Directed Graphs vs. undirected graphs
n Graphs without directions are termed undirected 

graphs
n An undirected graph can be considered as a 

directed graph with each edge on both directions
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Degrees in an undirected graph
n We usually care how many neighbors of each vertex, 

pEspecially the vertices with many neighbors
n The degree of a vertex is the number of neighbors



In and Out Degrees in a directed graph
n The in (incoming) degree of a vertex is the number 

of its incoming neighbors
n The out (out-going) degree of a vertex is the number 

of its out-going neighbors
n in/out
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Paths
n A path from v0 to vk is an ordered sequence of 

vertices 
(v0, v1, v2, ..., vk)

where {vi – 1, vi} is an edge for i = 1, ..., k
n Examples of paths from 1 to 5:

(1, 2, 5)   
(1, 4, 7, 5) 
(1, 2, 4, 1, 2, 5) 



Simple Paths
n A simple path has no repetitions other than 

perhaps the first and last vertices
p (1, 2, 5)    simple path
p (1, 2, 4, 1, 2, 5)  not simple path

n A simple path where the first and last vertices are 
equal is said to be a cycle
pe.g., (1, 2, 4, 1)



Path length
n The length of an unweighted path is the number 

of edges in the path 
n The length of a weighted path is the weighted

sum of the edges in the path
pThe length of the path 1→4 →7 in the 

following graph is 5.1 + 3.7 = 8.8
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Connectivity
n Two vertices vi, vj are said to be connected if 

there is a path between vi to vj

n A graph is connected if there is a path between 
any two vertices

Connected graph Disconnected graph



Connected Components
n A graph may be disconnected
n But a subgraph may be connected
n A maximum connected subgraph of a graph is called 

a connected component (CC), e.g., 
pCC1 with vertices 0, 1, 2, 3, 4
pCC2 with vertices 5, and 6
pCC3 with only vertex 7
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Directed Acyclic Graphs
n A directed acyclic graph (DAG) is a directed 

graph which has no cycles
n Two example DAGs

n Not a DAG



Applications of Directed Acyclic Graphs
n Applications of DAGs include:

p Family trees

p Course pre-requisites
p Folders and sub folders in an Operation system
p …



3. Representations of a graph in computers 

n Adjacency Matrix
n Adjacency List



Representations for an Undirected graph
a) Graph structure b) Adjacency matrix for the graph c) Adjacency list for the 

graph
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Representations for a directed graph



Representation Space costs
n Adjacency Matrix:

pƟ(n2)
pn=|V| and m=|E|
pSuitable for dense graphs

n Adjacency List
pQ (n+m)
pm ≤ n(n-1)
pSuitable for sparse graphs
pMost real graphs are sparse
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4. Graph Traversals
n Some applications require visiting every vertex in the 

graph exactly once, in some special order based on 
graph topology

n Two orders of graph traversal
pBreadth-first search (BFS)
pDepth-first search (DFS)
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Breadth-first search (BFS)
n It starts at a root vertex s, the root at level 0
n Visit first the root vertex in level 0, then vertices 

in level 1, vertices in level 2,…
n Level means the shortest distance to the root
n Need an auxiliary queue in the search 



BFS example in a tree
n A tree is a special graph
n BFS starts from vertex 1

Order in which the nodes are visited 



BFS example in a graph, starts from vertex s 
n Queue Q stores the vertices visited, but has not

explored their neighbors 
n Once the neighbors of a vertex is explored, it is 

removed out from queue Q



BFS example-cont.
n BSF calculates the shortest distance of each 

vertex to root s, assume each edge weight is 1
n Time complexity of BFS:  Q (n+m)



BFS algorithm 
void BFS(Graph* G, int s) {
Queue<int> Q;
bool *visited = new bool[G->n()];
for(int i=0; i<G->n(); ++i) visited[i] = false;
Q->enqueue(s);        // Initialize Q
visited[s]= true;
int v, w;
Node *cur;
while (Q->length() > 0) { // Process Q
Q->dequeue(v);
PreVisit(G, v);   // Take action
for(cur = G->adjList[v]; cur != NULL; cur=cur-

>next ){
w = cur->nodeID;
if( false == visited[w] ){

visited[w] = true;
Q->enqueue(w);

}
}

}
delete []visited;

}



Depth-first search (DFS)

n It starts at a root vertex
n Explore one branch of a vertex as far as possible, 

before exploring another branch of the vertex
n If no branches can be explored, backtrack 



DFS example in a tree
n DFS starts from vertex 1
n Similar to a pre-order traversal in a tree

Order in which the nodes are visited 



DFS example in a graph, start from vertex s

n Vertices are visited in order: s->A->D->G->E->B->F->C
n There may be multiple orders
n Another order is: s->B->E->G->F->C->D->A

31



DFS Algorithm
void DFS(Graph* G, int v) {
PreVisit(G, v);  // Take action
visited[ v ] = true;
Node *cur; 
for ( cur=G->adjList[v]; cur !=NULL; 
cur=cur->next){

w = cur->nodeID;
if( false == visited[ w ] )

DFS(G, w );
}

}

Time complexity: Q (n+m)
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5. Topological Sort, applications:
1. Consider all courses you will learn, some course 

must be learned before another 
p e.g., You must learn C before this course
p List all courses in order, such that no prerequisite

courses is after each course in the order
p E.g., you cannot learn this course before C

2. Given a set of jobs to be done by a computer, and 
some jobs must be finished before other jobs
p List all jobs in order, such that no prerequisite

jobs is after each job in the order



Topological Sort
n Problem: Given a DAG G=(V,E), output all vertices 

in an order such that no vertex vj appears before
another vertex vi if there is an edge from vi to vj in G 

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



n Why do we perform topological sorts only on DAGs?
pBecause a cycle means there is no correct answer

n Is there always a unique order?
pNo, there can be multiple orders; depends on the 

graph

n Do some DAGs have exactly 1 order?
pYes, e.g., the DAG is a linked list

Questions and comments

0

1

3

2
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Algorithm for Topological Sort

n While there are vertices not yet output:

p Choose a vertex v with in-degree of 0, i.e., no 

dependency

p Output v and remove it from the graph

p For each out-going neighbor u of v, decrease 

the in-degree of u by 1



Example Output: 

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?
In-degree:    0       0     2      1       1       1     1      1      1      3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x
In-degree:     0    0     2 1      1     1     1      1      1     3

1

CSE 143

CSE 374

CSE 373
CSE 410

CSE 417

CSE 415

CSE 413

XYZ

MATH 126

CSE 142



Example Output: 
126
142

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?     x      x
In-degree:    0      0     2      1       1    1     1      1      1     3

1
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x
In-degree:    0       0     2      1     1     1     1      1      1     3

1      0 0
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x x
In-degree:     0     0     2      1     1     1     1      1     1      3

1      0     0 2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x x x
In-degree:     0     0     2      1     1      1     1      1      1     3

1      0     0      0      0      0      0    2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373
417

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?     x     x x x x x
In-degree:     0     0     2     1      1      1     1      1      1     3

1     0      0      0     0      0      0     2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373
417
410

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x x x x x
In-degree:     0     0     2      1     1      1     1      1     1      3

1      0     0      0     0      0     0      2
0                                                 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373
417
410
413

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x x x x x x
In-degree:     0     0      2     1     1      1      1     1     1      3

1     0     0      0      0    0     0      2
0                                                 1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373
417
410
413
XYZ

Node:          126 142  143  374  373  410  413  415  417  XYZ
Removed?      x     x x x x x x x x
In-degree:     0     0     2      1     1      1      1      1     1     3

1      0     0      0      0      0     0     2
0                                                  1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Example Output: 
126
142
143
374
373
417
410
413
XYZ
415Node:          126 142  143  374  373  410  413  415  417  XYZ

Removed?      x     x x x x x x x x x
In-degree:     0     0      2     1      1     1      1      1      1      3

1     0      0     0      0      0      0      2
0                                                   1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ



Notice
n Need a vertex with in-degree 0 to start

pWe can do this because a DAG has no cycles
n Ties among multiple vertices with in-degrees of 0 

can be broken arbitrarily
n There are multiple answers to a topological sort



queue based Topological Sort
void topSort(Graph* G) {
Queue<int> Q;
int inDegrees[G->n()];
int v, w;
Node *cur;
for (v=0; v<G->n(); v++) inDegrees[v] = 0;
for (v=0; v<G->n(); v++) // Process edges
for (cur=G->adjList[v]; cur!=NULL;               

cur=cur->next )// out-neighbors of vertex v
inDegrees[cur->nodeID]++; 

for (v=0; v<G->n(); v++) // Initialize Q
if (inDegrees[v] == 0)// No in-neighbors
Q->enqueue(v);

while (Q->length() > 0) {
Q->dequeue(v);
printout(v);     // PreVisit for V
for (cur=G->adjList[v]; cur!=NULL;               

cur=cur->next ) {
w = cur->nodeID;
inDegrees[w]--;    // One less in-neigb.
if (inDegrees[w] == 0) // Now free
Q->enqueue(w);

}}}



Running time

p Initializing queue Q, array inDegrees takes Q (n+m) 
(assuming adjacency list)

p Notice that each vertex enqueues only once, and explore 

its out-going neighbors when it dequeues from queue Q

• Takes time Q (n+m) 

p Total time: Q (n+m) 



6. Applications of shortest paths
n The Internet is a collection of interconnected

computer networks
n Information is passed from a source host, through 

routers, to its destination server
n e.g. a portion of Internet

51

n How to send the 
information along some 
routers with shortest delay?



Application – google map navigation
n The driving path from Jiang’an campus to 

Wangjiang campus 



6. Shortest Paths Problems
n Problem 1: Given a weighted graph, one common 

problem is to find the shortest path from a source
vertex s to a destination vertex t

n Problem 2: find shortest paths from a source 
vertex s to all other vertices

n The problem 1 is not easier than problem 2
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Shortest Path
n Find the shortest path from vertex 1 to vertex 13
n Path 1→2 → 5 → 9 → 11 → 13 is shortest, with 

distance 14
n Other paths are longer, e.g, 

ppath 1→2 → 4 → 8 → 11 → 13, distance is 17
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Basic idea of Dijkstra’s algorithm
n Find shortest paths from a source vertex s to other vertices
n It first estimates the shortest distance to each vertex
n Assume that we have found the shortest paths from s to a 

set S of vertices
n It repeatedly selects the vertex u in V\S with the minimum

shortest-path estimate, adds u to S
n After the adding of u, update the shortest distance 

estimates of vertices still in V\S



Example of Dijkstra’s algorithm
n The value on each vertex is the shortest distance 

estimate or shortest distance from s to the vertex



All-Pairs Shortest Paths
n Calculate the shortest paths for all pairs of 

vertices
n Run Dijkstra’s algorithm n times, each time 

starting from each vertex
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7. Minimum Spanning Tree (MST)

n Given an undirected, connected graph G=(V, E), 
and an edge weight function: w: E->R, 

n the minimum spaning tree is a spanning tree 
T=(V, E’) of G such that the weighted sum of 
edges in T is minimized
p A spanning tree T=(V, E’) of G is a subgraph of G so 

that the subgraph contains no cycles and spans
vertices in V



Applications of MST
n Direct applications in

p Computer networks
p telecommunication network
p transportation networks
p water supply networks
p electrical grids

n Invoked as a subroutine for other problems
p Approximating the  travelling salesman problem
p Steiner tree problem
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An application example of MST in 
telecommunication networks

n A telecommunication company  wants to lay cables to a new 
neighbourhood and must bury cables along roads.  G=(V, E), w: 
E->R
p Each vertex is V represents a building
p Each edge (u, v) in E represents the road connects buildings u and v
p w(u,v):  the cost of burying cables to connect buildings u and v

n How to lay cables to connect the buildings so that the total 
cost is minimized?
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Two optimal algorithms to the MST problem

n Kruskal’s algorithm
p Q(n+m*log n )
p m = |E|, n = |V|

n Prim’s algorithm
p Q(m+ n*log n )

n Both construct the MST in a greedy way
n Introduce the Prim’s algorithm as follows, as it is 

usually faster than Kruskal’s algorithm
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Basic idea of Prim’s Algorithm
n The MST T grows from a single vertex
n Assume that T has already spanned some vertices in 

set S, iteratively extend T by removing the nearest
vertex u in set V\S to S.

n After (n-1) times of growing, T spans all nodes in V

S V/S

u
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Conclusions
1. Applications of graphs
2. Notations in graphs
3. Graph representations in computers
4. Graph traversals
5. Topological sort
6. Shortest Path
7. Minimum Spanning Tree

Study Four 
common 
problems 
in graphs



Homework 4

n See course webpage
n Deadline: midnight before next lecture
n Submit to: cs_scu@foxmail.com
n File name format:

p CS311_Hw4_yourID_yourLastName.doc (or .pdf)
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