
Chapter 11: Graph
Slides by: Yuhao Yi, and Tristan Wenzheng Xu

College of Computer Science

Sichuan University

Data Structure and Algorithm Analysis

Contents
1. Applications of graphs
2. Notations in graphs
3. Graph representations in computers
4. Graph traversals
5. Topological sort
6. Shortest Path
7. Minimum Spanning Tree

Study Four
common
problems
in graphs

1. Graphs have wide, wide applications
n Modeling relationships (families, organizations)

pe.g., Model friendships in social networks
n Modeling connectivity in computer networks
n Representing maps

pE.g., google map
n Finding paths from start to goal
n …
n Binary trees, B trees, B+ trees are special

graphs

2. Notations in Graphs

n Unweighted graph vs. weighted graph
n Undirected graph vs. directed graph
n Degrees
n Path and cycle
n Path length
n Connectivity
n Connected components
n Acyclic directed graph

Graph
properties

The importance of vertices in a graph

Relationship
between
vertices in a
graph

Definition of an unweighted graph
n A graph G = (V, E) consists of a set V of vertices,

and a set of edges E, such that each edge in E is
a connection between a pair of vertices in V
pn=|V|, m=|E|

n Example: given the vertices
V = {v1, v2, v3, v4}

and the edges
E = {{v1, v2}, {v1, v3}, {v3, v4}}

the graph has three edges connecting four
vertices

Weighted Graphs
n Each edge may be associated with a weight
n This could represent distance, time, energy

consumption, cost, etc

Directed Graphs
n Each edge in a graph may be associated with a

direction
n An edge from vi to vj does not imply an edge from vj to
vi

n All edges are ordered pairs (vi, vj) where this denotes
a connection from vi to vj

n Such a graph is termed a directed graph
n For example,

V = {1, 2, 3, 4}
E = {(1, 2), (1, 3), (4, 3)}

Directed Graphs
n If there is an edge from vi to vj and an edge

from vj to vi , plotted as

8

Directed Graphs vs. undirected graphs
n Graphs without directions are termed undirected

graphs
n An undirected graph can be considered as a

directed graph with each edge on both directions

9

Degrees in an undirected graph
n We usually care how many neighbors of each vertex,

pEspecially the vertices with many neighbors
n The degree of a vertex is the number of neighbors

In and Out Degrees in a directed graph
n The in (incoming) degree of a vertex is the number

of its incoming neighbors
n The out (out-going) degree of a vertex is the number

of its out-going neighbors
n in/out

2/5

Paths
n A path from v0 to vk is an ordered sequence of

vertices
(v0, v1, v2, ..., vk)

where {vi – 1, vi} is an edge for i = 1, ..., k
n Examples of paths from 1 to 5:

(1, 2, 5)
(1, 4, 7, 5)
(1, 2, 4, 1, 2, 5)

Simple Paths
n A simple path has no repetitions other than

perhaps the first and last vertices
p (1, 2, 5) simple path
p (1, 2, 4, 1, 2, 5) not simple path

n A simple path where the first and last vertices are
equal is said to be a cycle
pe.g., (1, 2, 4, 1)

Path length
n The length of an unweighted path is the number

of edges in the path
n The length of a weighted path is the weighted

sum of the edges in the path
pThe length of the path 1→4 →7 in the

following graph is 5.1 + 3.7 = 8.8

14

Connectivity
n Two vertices vi, vj are said to be connected if

there is a path between vi to vj

n A graph is connected if there is a path between
any two vertices

Connected graph Disconnected graph

Connected Components
n A graph may be disconnected
n But a subgraph may be connected
n A maximum connected subgraph of a graph is called

a connected component (CC), e.g.,
pCC1 with vertices 0, 1, 2, 3, 4
pCC2 with vertices 5, and 6
pCC3 with only vertex 7

16

Directed Acyclic Graphs
n A directed acyclic graph (DAG) is a directed

graph which has no cycles
n Two example DAGs

n Not a DAG

Applications of Directed Acyclic Graphs
n Applications of DAGs include:

p Family trees

p Course pre-requisites
p Folders and sub folders in an Operation system
p …

3. Representations of a graph in computers

n Adjacency Matrix
n Adjacency List

Representations for an Undirected graph
a) Graph structure b) Adjacency matrix for the graph c) Adjacency list for the

graph

20

Representations for a directed graph

Representation Space costs
n Adjacency Matrix:

pƟ(n2)
pn=|V| and m=|E|
pSuitable for dense graphs

n Adjacency List
pQ (n+m)
pm ≤ n(n-1)
pSuitable for sparse graphs
pMost real graphs are sparse

22

4. Graph Traversals
n Some applications require visiting every vertex in the

graph exactly once, in some special order based on
graph topology

n Two orders of graph traversal
pBreadth-first search (BFS)
pDepth-first search (DFS)

23

Breadth-first search (BFS)
n It starts at a root vertex s, the root at level 0
n Visit first the root vertex in level 0, then vertices

in level 1, vertices in level 2,…
n Level means the shortest distance to the root
n Need an auxiliary queue in the search

BFS example in a tree
n A tree is a special graph
n BFS starts from vertex 1

Order in which the nodes are visited

BFS example in a graph, starts from vertex s
n Queue Q stores the vertices visited, but has not

explored their neighbors
n Once the neighbors of a vertex is explored, it is

removed out from queue Q

BFS example-cont.
n BSF calculates the shortest distance of each

vertex to root s, assume each edge weight is 1
n Time complexity of BFS: Q (n+m)

BFS algorithm
void BFS(Graph* G, int s) {
Queue<int> Q;
bool *visited = new bool[G->n()];
for(int i=0; i<G->n(); ++i) visited[i] = false;
Q->enqueue(s); // Initialize Q
visited[s]= true;
int v, w;
Node *cur;
while (Q->length() > 0) { // Process Q
Q->dequeue(v);
PreVisit(G, v); // Take action
for(cur = G->adjList[v]; cur != NULL; cur=cur-

>next){
w = cur->nodeID;
if(false == visited[w]){

visited[w] = true;
Q->enqueue(w);

}
}

}
delete []visited;

}

Depth-first search (DFS)

n It starts at a root vertex
n Explore one branch of a vertex as far as possible,

before exploring another branch of the vertex
n If no branches can be explored, backtrack

DFS example in a tree
n DFS starts from vertex 1
n Similar to a pre-order traversal in a tree

Order in which the nodes are visited

DFS example in a graph, start from vertex s

n Vertices are visited in order: s->A->D->G->E->B->F->C
n There may be multiple orders
n Another order is: s->B->E->G->F->C->D->A

31

DFS Algorithm
void DFS(Graph* G, int v) {
PreVisit(G, v); // Take action
visited[v] = true;
Node *cur;
for (cur=G->adjList[v]; cur !=NULL;
cur=cur->next){

w = cur->nodeID;
if(false == visited[w])

DFS(G, w);
}

}

Time complexity: Q (n+m)

32

5. Topological Sort, applications:
1. Consider all courses you will learn, some course

must be learned before another
p e.g., You must learn C before this course
p List all courses in order, such that no prerequisite

courses is after each course in the order
p E.g., you cannot learn this course before C

2. Given a set of jobs to be done by a computer, and
some jobs must be finished before other jobs
p List all jobs in order, such that no prerequisite

jobs is after each job in the order

Topological Sort
n Problem: Given a DAG G=(V,E), output all vertices

in an order such that no vertex vj appears before
another vertex vi if there is an edge from vi to vj in G

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

n Why do we perform topological sorts only on DAGs?
pBecause a cycle means there is no correct answer

n Is there always a unique order?
pNo, there can be multiple orders; depends on the

graph

n Do some DAGs have exactly 1 order?
pYes, e.g., the DAG is a linked list

Questions and comments

0

1

3

2

4

Algorithm for Topological Sort

n While there are vertices not yet output:

p Choose a vertex v with in-degree of 0, i.e., no

dependency

p Output v and remove it from the graph

p For each out-going neighbor u of v, decrease

the in-degree of u by 1

Example Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3

1

CSE 143

CSE 374

CSE 373
CSE 410

CSE 417

CSE 415

CSE 413

XYZ

MATH 126

CSE 142

Example Output:
126
142

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373
417

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373
417
410

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0 1

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373
417
410
413

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0 1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373
417
410
413
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0 1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Example Output:
126
142
143
374
373
417
410
413
XYZ
415Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

1 0 0 0 0 0 0 2
0 1

0

CSE 142 CSE 143

CSE 374

CSE 373
CSE 410

MATH 126

CSE 417

CSE 415

CSE 413

XYZ

Notice
n Need a vertex with in-degree 0 to start

pWe can do this because a DAG has no cycles
n Ties among multiple vertices with in-degrees of 0

can be broken arbitrarily
n There are multiple answers to a topological sort

queue based Topological Sort
void topSort(Graph* G) {
Queue<int> Q;
int inDegrees[G->n()];
int v, w;
Node *cur;
for (v=0; v<G->n(); v++) inDegrees[v] = 0;
for (v=0; v<G->n(); v++) // Process edges
for (cur=G->adjList[v]; cur!=NULL;

cur=cur->next)// out-neighbors of vertex v
inDegrees[cur->nodeID]++;

for (v=0; v<G->n(); v++) // Initialize Q
if (inDegrees[v] == 0)// No in-neighbors
Q->enqueue(v);

while (Q->length() > 0) {
Q->dequeue(v);
printout(v); // PreVisit for V
for (cur=G->adjList[v]; cur!=NULL;

cur=cur->next) {
w = cur->nodeID;
inDegrees[w]--; // One less in-neigb.
if (inDegrees[w] == 0) // Now free
Q->enqueue(w);

}}}

Running time

p Initializing queue Q, array inDegrees takes Q (n+m)
(assuming adjacency list)

p Notice that each vertex enqueues only once, and explore

its out-going neighbors when it dequeues from queue Q

• Takes time Q (n+m)

p Total time: Q (n+m)

6. Applications of shortest paths
n The Internet is a collection of interconnected

computer networks
n Information is passed from a source host, through

routers, to its destination server
n e.g. a portion of Internet

51

n How to send the
information along some
routers with shortest delay?

Application – google map navigation
n The driving path from Jiang’an campus to

Wangjiang campus

6. Shortest Paths Problems
n Problem 1: Given a weighted graph, one common

problem is to find the shortest path from a source
vertex s to a destination vertex t

n Problem 2: find shortest paths from a source
vertex s to all other vertices

n The problem 1 is not easier than problem 2

53

Shortest Path
n Find the shortest path from vertex 1 to vertex 13
n Path 1→2 → 5 → 9 → 11 → 13 is shortest, with

distance 14
n Other paths are longer, e.g,

ppath 1→2 → 4 → 8 → 11 → 13, distance is 17

54

Basic idea of Dijkstra’s algorithm
n Find shortest paths from a source vertex s to other vertices
n It first estimates the shortest distance to each vertex
n Assume that we have found the shortest paths from s to a

set S of vertices
n It repeatedly selects the vertex u in V\S with the minimum

shortest-path estimate, adds u to S
n After the adding of u, update the shortest distance

estimates of vertices still in V\S

Example of Dijkstra’s algorithm
n The value on each vertex is the shortest distance

estimate or shortest distance from s to the vertex

All-Pairs Shortest Paths
n Calculate the shortest paths for all pairs of

vertices
n Run Dijkstra’s algorithm n times, each time

starting from each vertex

57

7. Minimum Spanning Tree (MST)

n Given an undirected, connected graph G=(V, E),
and an edge weight function: w: E->R,

n the minimum spaning tree is a spanning tree
T=(V, E’) of G such that the weighted sum of
edges in T is minimized
p A spanning tree T=(V, E’) of G is a subgraph of G so

that the subgraph contains no cycles and spans
vertices in V

Applications of MST
n Direct applications in

p Computer networks
p telecommunication network
p transportation networks
p water supply networks
p electrical grids

n Invoked as a subroutine for other problems
p Approximating the travelling salesman problem
p Steiner tree problem

59

An application example of MST in
telecommunication networks

n A telecommunication company wants to lay cables to a new
neighbourhood and must bury cables along roads. G=(V, E), w:
E->R
p Each vertex is V represents a building
p Each edge (u, v) in E represents the road connects buildings u and v
p w(u,v): the cost of burying cables to connect buildings u and v

n How to lay cables to connect the buildings so that the total
cost is minimized?

60

Two optimal algorithms to the MST problem

n Kruskal’s algorithm
p Q(n+m*log n)
p m = |E|, n = |V|

n Prim’s algorithm
p Q(m+ n*log n)

n Both construct the MST in a greedy way
n Introduce the Prim’s algorithm as follows, as it is

usually faster than Kruskal’s algorithm

61

Basic idea of Prim’s Algorithm
n The MST T grows from a single vertex
n Assume that T has already spanned some vertices in

set S, iteratively extend T by removing the nearest
vertex u in set V\S to S.

n After (n-1) times of growing, T spans all nodes in V

S V/S

u

(c)

25
5

0

4

6

1

3

2
10

22

5

0

4

6

1

3

2

28

10

25

14

24

22

16

18

graph

12

10

5

0

4

6

1

3

2

(a)

5

0

4

6

1

3

2
10

25

(b)

25
5

0

4

6

1

3

2
10

22
12

(d)

5

0

4

6

1

2
10

25

14

22

16

12
3

(e) (f) MST

Conclusions
1. Applications of graphs
2. Notations in graphs
3. Graph representations in computers
4. Graph traversals
5. Topological sort
6. Shortest Path
7. Minimum Spanning Tree

Study Four
common
problems
in graphs

Homework 4

n See course webpage
n Deadline: midnight before next lecture
n Submit to: cs_scu@foxmail.com
n File name format:

p CS311_Hw4_yourID_yourLastName.doc (or .pdf)

65

mailto:cs_scu@foxmail.com

