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Algorithm Design
To now, we have examined a number of data 
structures and algorithms to manipulate them
We have seen examples of efficient strategies
q Divide and conquer

� Binary search
� Depth-first tree traversals
� Merge sort
� Quicksort

q Greedy algorithms
� Prim’s algorithm
� Kruskal’s algorithm
� Dijkstra’s algorithm
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Algorithm Design

We will now examine a number of strategies 
which may be used in the design of 
algorithms, including:
q Greedy algorithms
q Divide-and-conquer algorithms
q Dynamic programming
q Backtracking algorithms
q Stochastic algorithms
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Algorithm Design

When searching for a solution, we may be 
interested in two types:
q Either we are looking for the optimal solution, or,
q We are interested in a solution which is good 

enough, where good enough is defined by a set of 
parameters
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Algorithm Design

For many of the strategies we will examine, 
there will be certain circumstances where the 
strategy can be shown to result in an optimal 
solution

In other cases, the strategy may not be 
guaranteed to do so well
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Algorithm Design

Any problem may usually be solved in 
multiple ways

The simplest to implement and most difficult 
to run is brute force
q We consider all possible solutions, and find that 

solution which is optimal
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Algorithm Design

Brute force techniques often take too much 
time to run

We may use brute-force techniques to show 
that solutions found through other algorithms 
are either optimal or close-to-optimal
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Algorithm Design

With brute force, we consider all possible 
solutions
Most other techniques build solutions, thus, we 
require the following definitions

Definition:
q A partial solution is a solution to a problem which 

could possibly be extended
q A feasible solution is a solution which satisfies any 

given requirements
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Algorithm Design

Thus, we would say that a brute-force search 
tests all feasible solutions

Most techniques will build feasible solutions 
from partial solutions and thereby test only a 
subset of all possible feasible solutions
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Algorithm Design

It may be possible in some cases to have 
partial solutions which are acceptable (that is, 
feasible) solutions to the problem

In other cases, partial solutions may be 
unacceptable, and therefore we must 
continue until we reach a feasible solution
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Algorithm Design

We will look at two problems:
q the first requires an exact (optimal) solution,
q the second requires only an approximately optimal 

solution

In the second case, it would be desirable, but 
not necessary, to find the optimal solution
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Example 1: Sudoku game
For example, consider the game of Sudoku
The rules are:
q each number must appear once in each row, column, 

and 3 × 3 outlined square

http://xkcd.com/74/

You are given some
initial numbers, and if they
are chosen appropriately,
there is a unique solution.
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Example 1: Sudoku game

Using brute force, we could try every possible 
solution, and discard those which do not satisfy 
the conditions

This technique would require us to check 961 ≈  
1.6×1058 possible solutions
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Example 2: Project management

Suppose you are a manager, and you have 26 weeks or 
half a year for the next product cycle
You have n possible projects, however, the time required 
to complete these projects is much greater than 26 
weeks

Associated with each possible project are numerous 
factors:
q The expected completion time
q The expected increase in revenue
q A probability of failure
q Possible future projects which may benefit

14



@ CS311, Hao Wang, SCU

Example 2: Project management

Stake holders include:
q Team members
q Marketing
q Other management
q The executive team

You must now decide which projects must be 
chosen so as to satisfy the schedule
q It must be justifiable
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Example 2: Project management

In this case, it is almost impossible to come 
up with a optimal choice of projects, however, 
you are required to come up with an 
appropriate solution

We will see how an appropriate choice of 
algorithm may lead us towards a reasonably 
optimal solution
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Example 2: Project management

In this case, any sub-set of the n projects 
forms a partial solution

A partial solution is a feasible solution if the 
sum of the expected completion times is less 
than six months
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Example 3: Interval scheduling

Another case we will look at is interval 
scheduling:
q Given n processes, all of which must be run at specific 

times, maximize the number of processes that are run

This has a reasonably simple solution that we 
will see later
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Example 3: Interval scheduling

However, if you modify the problem:
q Given n processes, all of which must be run at specific 

times and where each is given a specific weight, 
maximize the total weight of the processes that are run
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Greedy algorithms

§ This topic will cover greedy algorithms:
q Definitions
q Examples

� Making change
� Prim's and Dijkstra's algorithm

q Other examples
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Greedy algorithms

Suppose it is possible to build a solution 
through a sequence of partial solutions
q At each step, we focus on one particular partial 

solution and we attempt to extend that solution
q Ultimately, the partial solutions should lead to a 

feasible solution which is also optimal
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Making change

Consider this commonplace example:
q Making the exact change with the minimum number of coins
q Consider the Euro denominations of 1, 2, 5, 10, 20, 50 cents
q Stating with an empty set of coins, add the largest coin possible 

into the set which does not go over the required amount
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Making change

To make change for €0.72:
q Start with €0.50

Total €0.50
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Making change

To make change for €0.72:
q Start with €0.50
q Add a €0.20

Total €0.70
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Making change

To make change for €0.74:
q Start with €0.50
q Add a €0.20
q Skip the €0.10 and the €0. 05 but add a €0.02 

Total €0.72

25



@ CS311, Hao Wang, SCU

Making change

Notice that each digit can be worked with 
separately
q The maximum number of coins for any digit is three
q Thus, to make change for anything less than €1 

requires at most six coins
q The solution is optimal
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Making change

Does this strategy always work?
q What if our coin denominations grow quadraticly?

Consider 1, 4, 9, 16, 25, 36, and 49 dumbledores

Reference:  J.K. Rowlings, Harry Potter, Raincoast Books, 1997.
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Making change

Using our algorithm, to make change for 72 
dumbledores, we require six coins:

72 = 49 + 16 + 4 + 1 + 1 + 1
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Making change

The optimal solution, however, is two 36
dumbledore coins
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Definition
A greedy algorithm is an algorithm which has:
q A set of partial solutions from which a solution is built
q An objective function which assigns a value to any 

partial solution
Then given a partial solution, we
q Consider possible extensions of the partial solution
q Discard any extensions which are not feasible
q Choose that extension which minimizes the object 

function
This continues until some criteria has been 
reached.
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Optimal example
Prim’s algorithm is a greedy algorithm:
q Any connected sub-graph of k vertices and k – 1 edges is a 

partial solution
q The value to any partial solution is the sum of the weights 

of the edges

Then given a partial solution, we
q Add that edge which does not create a cycle in the partial 

solution and which minimizes the increase in the total 
weight

q We continue building the partial solution until the partial 
solution has n vertices 

q An optimal solution is found.
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Optimal example
Dijkstra’s algorithm is a greedy algorithm:
q A subset of k vertices and known the minimum distance to all k

vertices is a partial solution

Then given a partial solution, we
q Add that edge which is smallest which connects a vertex to which 

the minimum distance is known and a vertex to which the 
minimum distance is not known

q We define the distance to that new vertex to be the distance to 
the known vertex plus the weight of the connecting edge

q We continue building the partial solution until either:
� The minimum distance to a specific vertex is known, or
� The minimum distance to all vertices is known

q An optimal solution is found
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Optimal and sub-optimal examples

Our coin change example is greedy:
q Any subset of k coins is a partial solution
q The value to any partial solution is the sum of the values

Then given a partial solution, we
q Add that coin which maximizes the increase in value without 

going over the target value
q We continue building the set of coins until we have reached the 

target value
An optimal solution is found with euros, but not with the 
quadratic dumbledore coins.
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Unfeasible example

In some cases, it may be possible that not 
even a feasible solution is found
q Consider the following greedy algorithm for 

solving Sudoku:
q For each empty square, starting at the top-left 

corner and going across:
� Fill that square with the smallest number which does not 

violate any of our conditions
� All feasible solutions have equal weight
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Unfeasible example

Let’s try this example the previously seen 
Sudoku square:
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Unfeasible example

Neither 1 nor 2 fits into the first empty square, 
so we fill it with 3
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Unfeasible example

The second empty square may be filled with 1
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Unfeasible example

And the 3rd empty square may be filled with 4
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Unfeasible example

At this point, we try to fill in the 4th empty 
square
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Unfeasible example
Unfortunately, all nine numbers 1 – 9 already 
appear in such a way to block it from appearing 
in that square
q There is no known greedy algorithm which finds the 

one feasible solution
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Project management
0/1 knapsack problem

Situation:
q The next cycle for a given product is 26 weeks
q We have ten possible projects which could be 

completed in that time, each with an expected 
number of weeks to complete the project and an 
expected increase in revenue
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Project management
0/1 knapsack problem

Objective:
q As project manager, choose those projects which 

can be completed in the required amount of time 
which maximizes revenue

This is also called the 0/1 knapsack problem
q You can place n items in a knapsack where each 

item has a value in rupees and a weight in 
kilograms

q The knapsack can hold a maximum of m kilograms
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Project management
0/1 knapsack problem

The projects:
Product ID Completion 

Time (wks)
Expected Revenue

(1000 $)
A 15 210
B 12 220
C 10 180
D 9 120
E 8 160
F 7 170
G 5 90
H 4 40
J 3 60
K 1 10
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Project management
0/1 knapsack problem

Let us first try to find an optimal schedule by 
trying to be as productive as possible during the 
26 weeks:
q we will start with the projects in order from most time 

to least time, and at each step, select the longest-
running project which does not put us over 26 weeks

q we will be able to fill in the gaps with the smaller 
projects 
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Project management
0/1 knapsack problem

Greedy-by-time (make use of all 26 wks):
q Project A:15 wks
q Project C:10 wks
q Project J: 1 wk

Total time: 26 wks

Expected revenue:
$400 000

Product 
ID

Completion 
Time (wks)

Expected Revenue
(1000 $)

A 15 210
B 12 220
C 10 180
D 9 120
E 8 160
F 7 170
G 5 90
H 4 40
I 3 60
J 1 10
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Project management
0/1 knapsack problem

Next, let us attempt to find an optimal schedule 
by starting with the most :
q we will start with the projects in order from most time 

to least time, and at each step, select the longest-
running project which does not put us over 26 weeks

q we will be able to fill in the gaps with the smaller 
projects 
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Project management
0/1 knapsack problem

Greedy-by-revenue (best-paying projects):
q Project B:$220K
q Project C:$180K
q Project H:$  60K
q Project K:$  10K

Total time: 26 wks

Expected revenue:
$470 000

Product 
ID

Completion 
Time (wks)

Expected Revenue
(1000 $)

B 12 220
A 15 210
C 10 180
F 7 170
E 8 160
D 9 120
G 5 90
J 3 60
H 4 40
K 1 10
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Project management
0/1 knapsack problem

Unfortunately, either of these techniques focuses on 
projects which have high projected revenues or high run 
times

What we really want is to be able to complete those jobs 
which pay the most per unit of development time

Thus, rather than using development time or revenue, let 
us calculate the expected revenue per week of 
development time
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Project management
0/1 knapsack problem

This is summarized here:
Product 

ID
Completion 
Time (wks)

Expected Revenue 
(1000 $)

Revenue Density
($ / wk)

A 15 210 14 000
B 12 220 18 333
C 10 180 18 000
D 9 120 13 333
E 8 160 20 000
F 7 170 24 286
G 5 90 18 000
H 4 40 10 000
J 3 60 20 000
K 1 10 10 000

49



@ CS311, Hao Wang, SCU

Product 
ID

Completion 
Time (wks)

Expected 
Revenue 
(1000 $)

Revenue 
Density
($/wk)

F 7 170 24 286
E 8 160 20 000
J 3 60 20 000
B 12 220 18 333
C 10 180 18 000
G 5 90 18 000
A 15 210 14 000
D 9 120 13 333
H 4 40 10 000
K 1 10 10 000

Project management
0/1 knapsack problem

Greedy-by-revenue-density:
q Project F:$24 286/wk
q Project E:$20 000/wk
q Project J:$20 000/wk
q Project G:$18 000/wk
q Project K:$10 000/wk

Total time: 24 wks
Expected revenue:
$490 000

Bonus:  2 weeks for bug fixing
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Project management
0/1 knapsack problem

Using brute force, we find that the optimal solution is:
q Project C:$180 000
q Project E:$170 000
q Project F:$150 000
q Project K:$  10 000

Total time: 26 wks

Expected revenue:
$520 000

Product 
ID

Completion 
Time (wks)

Expected 
Revenue 
(1000 $)

Revenue 
Density
($/wk)

A 15 210 14 000
B 12 220 18 333
C 10 180 18 000
D 9 120 13 333
E 8 160 20 000
F 7 170 24 286
G 5 90 18 000
H 4 40 10 000
J 3 60 20 000
K 1 10 10 000
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Project management
0/1 knapsack problem

In this case, the greedy-by-revenue-density came 
closest to the optimal solution:

q The run time is Q(n ln(n)) — the time required to sort the list
q Later, we will see a dynamic program for finding an optimal 

solution with one additional constraint

Algorithm Expected 
Revenue

Greedy-by-time $400 000
Greedy-by-expected revenue $470 000
Greedy-by-revenue density $490 000
Brute force $520 000
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Project management
0/1 knapsack problem

Of course, in reality, there are numerous other 
factors affecting projects, including:
q Flexible deadlines (if a delay by a week would result in 

a significant increase in expected revenue, this would 
be acceptable)

q Probability of success for particular projects
q The requirement for banner projects

� Note that greedy-by-revenue-density had none of the larger 
projects
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Interval scheduling

Suppose we have a list of processes, each of 
which must run in a given time interval: e.g.,
q process A must run during 2:00-5:00

process B must run during 4:00-9:00
process C must run during 6:00-8:00
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Interval scheduling
Suppose we want to maximize the number of processes 
that are run
In order to create a greedy algorithm, we must have a 
fast selection process which quickly determines which 
process should be run next
The first thought may be to always run that process that 
is next ready to run
q A little thought, however, quickly demonstrates that this fails

q The worst case would be to only run 1 out of n possible processes 
when n – 1 processes could have been run
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Interval scheduling

To maximize the number of processes that are run, we 
should 
trying to free up the processor as quickly as possible
q Instead of looking at the start times, look at the end times
q At any time that the processor is available, select that process 

with the earliest end time:  the earliest-deadline-first algorithm

In this example, Process B is the first to start, and then 
Process C follows:
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Interval scheduling

Consider the following list of 12  processes
together with the time interval during which
they must be run
q Find the optimal schedule with the earliest-

deadline-first greedy algorithm

Process Interval
A 5 – 8

B 10 – 13

C 6 – 9

D 12 – 15

E 3 – 7

F 8 – 11

G 1 – 6

H 8 – 12

J 3 – 5

K 2 – 4

L 11 – 16

M 10 – 15
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Interval scheduling

In order to simplify this, sort the processes
on their end times

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

To begin, choose Process K Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

At this point, Process J, G and E can no
longer be run

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

Next, run Process A Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

We can no longer run Process C Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

Next, we can run Process F Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

This restricts us from running
Processes H, B and M

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

The next available process is D Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Interval scheduling

The prevents us from running Process L
q We are therefore finished

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Application:  Interval scheduling

We have scheduled four processes 
q The selection may not be unique

Once the processes are sorted, the run time
is linear—we simply look ahead to find the
next process that can be run
q Thus, the run time is the run time of sorting 

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Application:  Interval scheduling

For example, we could have chosen
Process L

In this case, processor usage would go
up, but no significance is given to that
criteria

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Application:  Interval scheduling

We could add weights to the individual
processes

q The weights could be the duration of
the processes—maximize processor usage

q The weights could be revenue gained from
the performance—maximize revenue 

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16
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Summary of greedy algorithms

We have seen the algorithm-design 
technique, namely greedy algorithms
q For some problems, appropriately-designed 

greedy algorithms may find either optimal or near-
optimal solutions

q For other problems, greedy algorithms may a poor 
result or even no result at all

Their desirable characteristic is speed 
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Divide-and-conquer algorithms

We have seen four divide-and-conquer algorithms:
q Binary search
q Depth-first tree traversals
q Merge sort
q Quick sort

The steps are:
q A larger problem is broken up into smaller problems
q The smaller problems are recursively
q The results are combined together again into a solution
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Divide-and-conquer algorithms

For example, merge sort:
q Divide a list of size n into b = 2 sub-lists of size n/2

entries
q Each sub-list is sorted recursively
q The two sorted lists are merged into a single sorted list
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Divide-and-conquer algorithms

More formally, we will consider only those 
algorithms which:
q Divide a problem into b sub-problems, each 

approximately of size n/b
� Up to now, b = 2

q Solve a ≥ 1 of those sub-problems recursively
� Merge sort and tree traversals solved a = 2 of them
� Binary search solves a = 1 of them

q Combine the solutions to the sub-problems to get a 
solution to the overall problem

73



@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

With the three problems we have already looked at we 
have looked at two possible cases for b = 2:

Merge sortb = 2a = 2
Depth-first traversalb = 2a = 2
Binary searchb = 2a = 1

Problem:  the first two have different run times:
Merge sortQ(n ln(n) )
Depth-first traversalQ(n)
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Divide-and-conquer algorithms

Thus, just using a divide-and-conquer algorithm does not 
solely determine the run time

We must also consider
q The effort required to divide the problem into two sub-problems
q The effort required to combine the two solutions to the sub-

problems
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Divide-and-conquer algorithms

For merge sort:
q Division is quick (find the middle): Q(1)
q Merging the two sorted lists into a single list is a Q(n) problem

For a depth-first tree traversal:
q Division is also quick: Q(1)
q A return-from-function is preformed at the end which is Q(1)

For quick sort (assuming division into two):
q Dividing is slow: Q(n)
q Once both sub-problems are sorted, we are finished:  Q(1)
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Divide-and-conquer algorithms

Thus, we are able to write the expression as follows:
q Binary search:

Q(ln(n))

q Depth-first traversal:
Q(n)

q Merge/quick sort:
Q(n ln(n))

In general, we will assume the work done combined 
work is of the form O(nk)
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Divide-and-conquer algorithms

Thus, for a general divide-and-conquer 
algorithm which:
q Divides the problem into b sub-problems
q Recursively solves a of those sub-problems
q Requires O(nk) work at each step requires
has a run time

Note:  we assume a problem of size n = 1 is solved...
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Summary of divide-and-conquer algo.

Divide-and-conquer algorithms:
q If the amount of work being done at each step to either 

sub-divide the problem or to recombine the solutions 
dominates, then this is the run time of the algorithm: 
O(nk)

q If the problem is being divided into many small sub-
problems (a > bk) then the number of sub-problems 
dominates: O(nlogb(a))

q In between, a little more (logarithmically more) work 
must be done
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Dynamic programming

§ This topic will cover dynamic programming:
q Definitions
q An Example

� Fibonacci numbers
q Other applications

� Interval scheduling
� Project management - 0/1 knapsack problem
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Dynamic programming

To begin, the word programming is used by 
mathematicians to describe a set of rules which 
must be followed to solve a problem
q Thus, linear programming describes sets of rules 

which must be solved a linear problem
q In our context, the adjective dynamic describes how 

the set of rules works
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Dynamic programming

Dynamic programming is distinct from divide-
and-conquer, as the divide-and-conquer 
approach works well if the sub-problems are 
essentially unique
q Storing intermediate results would only waste memory

If sub-problems re-occur, the problem is said to 
have overlapping sub-problems
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Fibonacci numbers

Consider this function:
double F( int n ) {

return ( n <= 1 ) ? 1.0 : F(n - 1) + F(n - 2);
}

The run-time of this algorithm is
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Fibonacci numbers

Consider this function calculating Fibonacci numbers:
double F( int n ) {

return ( n <= 1 ) ? 1.0 : F(n - 1) + F(n - 2);
}

The runtime is similar to the definition of Fibonacci numbers:

Therefore, T(n) = W(F(n)) = W(fn)

q In actual fact, T(n) = Q(fn), only 
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Fibonacci numbers

To demonstrate, consider:

#include <iostream>
#include <ctime>
using namespace std;

int main() {
cout.precision( 16 );    // print 16 decimal digits of precision for doubles

// 53/lg(10) = 15.95458977...

for ( int i = 33; i < 100; ++i ) {
cout << "F(" << i << ") = "

<< F(i) << '\t' << time(0) << endl;
}

return 0;
}

double F( int n ) {
return ( n <= 1 ) ? 1.0 : F(n - 1) + F(n - 2);

}
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Fibonacci numbers

The output:
F(33) = 57028871206474355
F(34) = 92274651206474355.    F(33), F(34), and F(35) in 1 s
F(35) = 149303521206474355
F(36) = 241578171206474356
F(37) = 390881691206474358
F(38) = 632459861206474360
F(39) = 1023341551206474363
F(40) = 1655801411206474368
F(41) = 2679142961206474376
F(42) = 4334944371206474389
F(43) = 7014087331206474411

F(44) = 11349031701206474469 ~1 min to calculate F(44)
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Fibonacci numbers

Problem:
q To calculate F(44), it is necessary to calculate F(43) and F(42)
q However, to calculate F(43), it is also necessary to calculate F(42)
q It gets worse, for example

� F(40) is called 5 times
� F(30) is called 620 times
� F(20) is called 75 025 times
� F(10) is called 9 227 465 times
� F(0) is called 433 494 437 times

Surely we don’t have to recalculate F(10) almost ten 
million times…
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Fibonacci numbers

Here is a possible solution:
q To avoid calculating values multiple times, store 

intermediate calculations in a table
q When storing intermediate results, this process is 

called memoization
� The root is memo

q We save (memoize) computed answers for possible 
later reuse, rather than re-computing the answer 
multiple times
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Fibonacci numbers

Once we have calculated a value, can we not store that 
value and return it if a function is called a second time?
q One solution: use an array
q Another: use an associative hash table
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Fibonacci numbers

static const int ARRAY_SIZE = 1000;
double * array = new double[ARRAY_SIZE];

array[0] = 1.0;
array[1] = 1.0;

// use 0.0 to indicate we have not yet calculated a value
for ( int i = 2; i < ARRAY_SIZE; ++i ) {

array[i] = 0.0;
}

double F( int n ) {
if ( array[n] == 0.0 ) {

array[n] = F( n – 1 ) + F( n – 2 );
}

return array[n];
}

Problems:  What if you go beyond the end of the array?

What if our problem is not indexed by integers?
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Fibonacci numbers

Recall the characteristics of an associative container:

template <typename S, typename T>
class Hash_table {

public:
// is something stored with the given key?
bool member( S key ) const;

// returns value associated with the inserted key
T retrieve( S key ) const;

void insert( S key, T value );
// ...

};       
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Fibonacci numbers

This program uses the Standard Template Library:
#include <map>

/* calculate the nth Fibonacci number */

double F( int n ) {
static std::map<int, double> memo;

// shared by all calls to F
// the key is int, the value is double

if ( n <= 1 ) {
return 1.0;

} else {

if ( memo[n] == 0.0 ) {
memo[n] = F(n - 1) + F(n - 2);

}

return memo[n];
}

}
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Fibonacci numbers
This prints the output up to F(1476):

The last two lines are
F(1475) = 1.306989223763399e+308
F(1476) = inf

Exact value: F(1475) = 13069892237633993180363115538027198309839244390741264072 
60066594601927930704792317402886810877770177210954631549790122762343222469369396471853667063684893626608441474
49941348462800922755818969634743348982916424954062744135969865615407276492410653721774590669544801490837649161
732095972658064630033793347171632

int main() {
std::cout.precision( 16 );

for ( int i = 0; i < 1476; ++i ) {
std::cout << "F(" << i << ") = " << F(i) << std::endl;

}

return 0;
}

93



@ CS311, Hao Wang, SCU

Summary of dynamic programming

We have considered the algorithm design 
strategy of dynamic programming
q Useful when recursive algorithms have overlapping 

sub-problems
q Storing calculated values allows significant reductions 

in time
� Memoization

q More applications
� Interval scheduling
� Project management - 0/1 knapsack problem
� …

94



@ CS311, Hao Wang, SCU

Wrape up

§ We examined a numer of algorithm design 
techniques which may, in some 
circumstances provide either optimal or near-
optimal solutions
q Greedy algorithms
q Divide-and-conquer algorithms
q Dynamic programming
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