
@ CS311, Hao Wang, SCU

Data Structures and
Algorithms

Lecture 12: Algorithm Design

@ CS311, Hao Wang, SCU

Algorithm Design
To now, we have examined a number of data
structures and algorithms to manipulate them
We have seen examples of efficient strategies
q Divide and conquer

� Binary search
� Depth-first tree traversals
� Merge sort
� Quicksort

q Greedy algorithms
� Prim’s algorithm
� Kruskal’s algorithm
� Dijkstra’s algorithm

2

@ CS311, Hao Wang, SCU

Algorithm Design

We will now examine a number of strategies
which may be used in the design of
algorithms, including:
q Greedy algorithms
q Divide-and-conquer algorithms
q Dynamic programming
q Backtracking algorithms
q Stochastic algorithms

3

@ CS311, Hao Wang, SCU

Algorithm Design

When searching for a solution, we may be
interested in two types:
q Either we are looking for the optimal solution, or,
q We are interested in a solution which is good

enough, where good enough is defined by a set of
parameters

4

@ CS311, Hao Wang, SCU

Algorithm Design

For many of the strategies we will examine,
there will be certain circumstances where the
strategy can be shown to result in an optimal
solution

In other cases, the strategy may not be
guaranteed to do so well

5

@ CS311, Hao Wang, SCU

Algorithm Design

Any problem may usually be solved in
multiple ways

The simplest to implement and most difficult
to run is brute force
q We consider all possible solutions, and find that

solution which is optimal

6

@ CS311, Hao Wang, SCU

Algorithm Design

Brute force techniques often take too much
time to run

We may use brute-force techniques to show
that solutions found through other algorithms
are either optimal or close-to-optimal

7

@ CS311, Hao Wang, SCU

Algorithm Design

With brute force, we consider all possible
solutions
Most other techniques build solutions, thus, we
require the following definitions

Definition:
q A partial solution is a solution to a problem which

could possibly be extended
q A feasible solution is a solution which satisfies any

given requirements

8

@ CS311, Hao Wang, SCU

Algorithm Design

Thus, we would say that a brute-force search
tests all feasible solutions

Most techniques will build feasible solutions
from partial solutions and thereby test only a
subset of all possible feasible solutions

9

@ CS311, Hao Wang, SCU

Algorithm Design

It may be possible in some cases to have
partial solutions which are acceptable (that is,
feasible) solutions to the problem

In other cases, partial solutions may be
unacceptable, and therefore we must
continue until we reach a feasible solution

10

@ CS311, Hao Wang, SCU

Algorithm Design

We will look at two problems:
q the first requires an exact (optimal) solution,
q the second requires only an approximately optimal

solution

In the second case, it would be desirable, but
not necessary, to find the optimal solution

11

@ CS311, Hao Wang, SCU

Example 1: Sudoku game
For example, consider the game of Sudoku
The rules are:
q each number must appear once in each row, column,

and 3 × 3 outlined square

http://xkcd.com/74/

You are given some
initial numbers, and if they
are chosen appropriately,
there is a unique solution.

12

@ CS311, Hao Wang, SCU

Example 1: Sudoku game

Using brute force, we could try every possible
solution, and discard those which do not satisfy
the conditions

This technique would require us to check 961 ≈
1.6×1058 possible solutions

13

@ CS311, Hao Wang, SCU

Example 2: Project management

Suppose you are a manager, and you have 26 weeks or
half a year for the next product cycle
You have n possible projects, however, the time required
to complete these projects is much greater than 26
weeks

Associated with each possible project are numerous
factors:
q The expected completion time
q The expected increase in revenue
q A probability of failure
q Possible future projects which may benefit

14

@ CS311, Hao Wang, SCU

Example 2: Project management

Stake holders include:
q Team members
q Marketing
q Other management
q The executive team

You must now decide which projects must be
chosen so as to satisfy the schedule
q It must be justifiable

15

@ CS311, Hao Wang, SCU

Example 2: Project management

In this case, it is almost impossible to come
up with a optimal choice of projects, however,
you are required to come up with an
appropriate solution

We will see how an appropriate choice of
algorithm may lead us towards a reasonably
optimal solution

16

@ CS311, Hao Wang, SCU

Example 2: Project management

In this case, any sub-set of the n projects
forms a partial solution

A partial solution is a feasible solution if the
sum of the expected completion times is less
than six months

17

@ CS311, Hao Wang, SCU

Example 3: Interval scheduling

Another case we will look at is interval
scheduling:
q Given n processes, all of which must be run at specific

times, maximize the number of processes that are run

This has a reasonably simple solution that we
will see later

18

@ CS311, Hao Wang, SCU

Example 3: Interval scheduling

However, if you modify the problem:
q Given n processes, all of which must be run at specific

times and where each is given a specific weight,
maximize the total weight of the processes that are run

19

@ CS311, Hao Wang, SCU

Greedy algorithms

§ This topic will cover greedy algorithms:
q Definitions
q Examples

� Making change
� Prim's and Dijkstra's algorithm

q Other examples

20

@ CS311, Hao Wang, SCU

Greedy algorithms

Suppose it is possible to build a solution
through a sequence of partial solutions
q At each step, we focus on one particular partial

solution and we attempt to extend that solution
q Ultimately, the partial solutions should lead to a

feasible solution which is also optimal

21

@ CS311, Hao Wang, SCU

Making change

Consider this commonplace example:
q Making the exact change with the minimum number of coins
q Consider the Euro denominations of 1, 2, 5, 10, 20, 50 cents
q Stating with an empty set of coins, add the largest coin possible

into the set which does not go over the required amount

22

@ CS311, Hao Wang, SCU

Making change

To make change for €0.72:
q Start with €0.50

Total €0.50

23

@ CS311, Hao Wang, SCU

Making change

To make change for €0.72:
q Start with €0.50
q Add a €0.20

Total €0.70

24

@ CS311, Hao Wang, SCU

Making change

To make change for €0.74:
q Start with €0.50
q Add a €0.20
q Skip the €0.10 and the €0. 05 but add a €0.02

Total €0.72

25

@ CS311, Hao Wang, SCU

Making change

Notice that each digit can be worked with
separately
q The maximum number of coins for any digit is three
q Thus, to make change for anything less than €1

requires at most six coins
q The solution is optimal

26

@ CS311, Hao Wang, SCU

Making change

Does this strategy always work?
q What if our coin denominations grow quadraticly?

Consider 1, 4, 9, 16, 25, 36, and 49 dumbledores

Reference: J.K. Rowlings, Harry Potter, Raincoast Books, 1997.

27

@ CS311, Hao Wang, SCU

Making change

Using our algorithm, to make change for 72
dumbledores, we require six coins:

72 = 49 + 16 + 4 + 1 + 1 + 1

28

@ CS311, Hao Wang, SCU

Making change

The optimal solution, however, is two 36
dumbledore coins

29

@ CS311, Hao Wang, SCU

Definition
A greedy algorithm is an algorithm which has:
q A set of partial solutions from which a solution is built
q An objective function which assigns a value to any

partial solution
Then given a partial solution, we
q Consider possible extensions of the partial solution
q Discard any extensions which are not feasible
q Choose that extension which minimizes the object

function
This continues until some criteria has been
reached.

30

@ CS311, Hao Wang, SCU

Optimal example
Prim’s algorithm is a greedy algorithm:
q Any connected sub-graph of k vertices and k – 1 edges is a

partial solution
q The value to any partial solution is the sum of the weights

of the edges

Then given a partial solution, we
q Add that edge which does not create a cycle in the partial

solution and which minimizes the increase in the total
weight

q We continue building the partial solution until the partial
solution has n vertices

q An optimal solution is found.

31

@ CS311, Hao Wang, SCU

Optimal example
Dijkstra’s algorithm is a greedy algorithm:
q A subset of k vertices and known the minimum distance to all k

vertices is a partial solution

Then given a partial solution, we
q Add that edge which is smallest which connects a vertex to which

the minimum distance is known and a vertex to which the
minimum distance is not known

q We define the distance to that new vertex to be the distance to
the known vertex plus the weight of the connecting edge

q We continue building the partial solution until either:
� The minimum distance to a specific vertex is known, or
� The minimum distance to all vertices is known

q An optimal solution is found

32

@ CS311, Hao Wang, SCU

Optimal and sub-optimal examples

Our coin change example is greedy:
q Any subset of k coins is a partial solution
q The value to any partial solution is the sum of the values

Then given a partial solution, we
q Add that coin which maximizes the increase in value without

going over the target value
q We continue building the set of coins until we have reached the

target value
An optimal solution is found with euros, but not with the
quadratic dumbledore coins.

33

@ CS311, Hao Wang, SCU

Unfeasible example

In some cases, it may be possible that not
even a feasible solution is found
q Consider the following greedy algorithm for

solving Sudoku:
q For each empty square, starting at the top-left

corner and going across:
� Fill that square with the smallest number which does not

violate any of our conditions
� All feasible solutions have equal weight

34

@ CS311, Hao Wang, SCU

Unfeasible example

Let’s try this example the previously seen
Sudoku square:

35

@ CS311, Hao Wang, SCU

Unfeasible example

Neither 1 nor 2 fits into the first empty square,
so we fill it with 3

36

@ CS311, Hao Wang, SCU

Unfeasible example

The second empty square may be filled with 1

37

@ CS311, Hao Wang, SCU

Unfeasible example

And the 3rd empty square may be filled with 4

38

@ CS311, Hao Wang, SCU

Unfeasible example

At this point, we try to fill in the 4th empty
square

39

@ CS311, Hao Wang, SCU

Unfeasible example
Unfortunately, all nine numbers 1 – 9 already
appear in such a way to block it from appearing
in that square
q There is no known greedy algorithm which finds the

one feasible solution

40

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Situation:
q The next cycle for a given product is 26 weeks
q We have ten possible projects which could be

completed in that time, each with an expected
number of weeks to complete the project and an
expected increase in revenue

41

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Objective:
q As project manager, choose those projects which

can be completed in the required amount of time
which maximizes revenue

This is also called the 0/1 knapsack problem
q You can place n items in a knapsack where each

item has a value in rupees and a weight in
kilograms

q The knapsack can hold a maximum of m kilograms

42

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

The projects:
Product ID Completion

Time (wks)
Expected Revenue

(1000 $)
A 15 210
B 12 220
C 10 180
D 9 120
E 8 160
F 7 170
G 5 90
H 4 40
J 3 60
K 1 10

43

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Let us first try to find an optimal schedule by
trying to be as productive as possible during the
26 weeks:
q we will start with the projects in order from most time

to least time, and at each step, select the longest-
running project which does not put us over 26 weeks

q we will be able to fill in the gaps with the smaller
projects

44

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Greedy-by-time (make use of all 26 wks):
q Project A:15 wks
q Project C:10 wks
q Project J: 1 wk

Total time: 26 wks

Expected revenue:
$400 000

Product
ID

Completion
Time (wks)

Expected Revenue
(1000 $)

A 15 210
B 12 220
C 10 180
D 9 120
E 8 160
F 7 170
G 5 90
H 4 40
I 3 60
J 1 10

45

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Next, let us attempt to find an optimal schedule
by starting with the most :
q we will start with the projects in order from most time

to least time, and at each step, select the longest-
running project which does not put us over 26 weeks

q we will be able to fill in the gaps with the smaller
projects

46

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Greedy-by-revenue (best-paying projects):
q Project B:$220K
q Project C:$180K
q Project H:$ 60K
q Project K:$ 10K

Total time: 26 wks

Expected revenue:
$470 000

Product
ID

Completion
Time (wks)

Expected Revenue
(1000 $)

B 12 220
A 15 210
C 10 180
F 7 170
E 8 160
D 9 120
G 5 90
J 3 60
H 4 40
K 1 10

47

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Unfortunately, either of these techniques focuses on
projects which have high projected revenues or high run
times

What we really want is to be able to complete those jobs
which pay the most per unit of development time

Thus, rather than using development time or revenue, let
us calculate the expected revenue per week of
development time

48

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

This is summarized here:
Product

ID
Completion
Time (wks)

Expected Revenue
(1000 $)

Revenue Density
($ / wk)

A 15 210 14 000
B 12 220 18 333
C 10 180 18 000
D 9 120 13 333
E 8 160 20 000
F 7 170 24 286
G 5 90 18 000
H 4 40 10 000
J 3 60 20 000
K 1 10 10 000

49

@ CS311, Hao Wang, SCU

Product
ID

Completion
Time (wks)

Expected
Revenue
(1000 $)

Revenue
Density
($/wk)

F 7 170 24 286
E 8 160 20 000
J 3 60 20 000
B 12 220 18 333
C 10 180 18 000
G 5 90 18 000
A 15 210 14 000
D 9 120 13 333
H 4 40 10 000
K 1 10 10 000

Project management
0/1 knapsack problem

Greedy-by-revenue-density:
q Project F:$24 286/wk
q Project E:$20 000/wk
q Project J:$20 000/wk
q Project G:$18 000/wk
q Project K:$10 000/wk

Total time: 24 wks
Expected revenue:
$490 000

Bonus: 2 weeks for bug fixing

50

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Using brute force, we find that the optimal solution is:
q Project C:$180 000
q Project E:$170 000
q Project F:$150 000
q Project K:$ 10 000

Total time: 26 wks

Expected revenue:
$520 000

Product
ID

Completion
Time (wks)

Expected
Revenue
(1000 $)

Revenue
Density
($/wk)

A 15 210 14 000
B 12 220 18 333
C 10 180 18 000
D 9 120 13 333
E 8 160 20 000
F 7 170 24 286
G 5 90 18 000
H 4 40 10 000
J 3 60 20 000
K 1 10 10 000

51

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

In this case, the greedy-by-revenue-density came
closest to the optimal solution:

q The run time is Q(n ln(n)) — the time required to sort the list
q Later, we will see a dynamic program for finding an optimal

solution with one additional constraint

Algorithm Expected
Revenue

Greedy-by-time $400 000
Greedy-by-expected revenue $470 000
Greedy-by-revenue density $490 000
Brute force $520 000

52

@ CS311, Hao Wang, SCU

Project management
0/1 knapsack problem

Of course, in reality, there are numerous other
factors affecting projects, including:
q Flexible deadlines (if a delay by a week would result in

a significant increase in expected revenue, this would
be acceptable)

q Probability of success for particular projects
q The requirement for banner projects

� Note that greedy-by-revenue-density had none of the larger
projects

53

@ CS311, Hao Wang, SCU

Interval scheduling

Suppose we have a list of processes, each of
which must run in a given time interval: e.g.,
q process A must run during 2:00-5:00

process B must run during 4:00-9:00
process C must run during 6:00-8:00

54

@ CS311, Hao Wang, SCU

Interval scheduling
Suppose we want to maximize the number of processes
that are run
In order to create a greedy algorithm, we must have a
fast selection process which quickly determines which
process should be run next
The first thought may be to always run that process that
is next ready to run
q A little thought, however, quickly demonstrates that this fails

q The worst case would be to only run 1 out of n possible processes
when n – 1 processes could have been run

55

@ CS311, Hao Wang, SCU

Interval scheduling

To maximize the number of processes that are run, we
should
trying to free up the processor as quickly as possible
q Instead of looking at the start times, look at the end times
q At any time that the processor is available, select that process

with the earliest end time: the earliest-deadline-first algorithm

In this example, Process B is the first to start, and then
Process C follows:

56

@ CS311, Hao Wang, SCU

Interval scheduling

Consider the following list of 12 processes
together with the time interval during which
they must be run
q Find the optimal schedule with the earliest-

deadline-first greedy algorithm

Process Interval
A 5 – 8

B 10 – 13

C 6 – 9

D 12 – 15

E 3 – 7

F 8 – 11

G 1 – 6

H 8 – 12

J 3 – 5

K 2 – 4

L 11 – 16

M 10 – 15

57

@ CS311, Hao Wang, SCU

Interval scheduling

In order to simplify this, sort the processes
on their end times

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

58

@ CS311, Hao Wang, SCU

Interval scheduling

To begin, choose Process K Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

59

@ CS311, Hao Wang, SCU

Interval scheduling

At this point, Process J, G and E can no
longer be run

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

60

@ CS311, Hao Wang, SCU

Interval scheduling

Next, run Process A Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

61

@ CS311, Hao Wang, SCU

Interval scheduling

We can no longer run Process C Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

62

@ CS311, Hao Wang, SCU

Interval scheduling

Next, we can run Process F Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

63

@ CS311, Hao Wang, SCU

Interval scheduling

This restricts us from running
Processes H, B and M

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

64

@ CS311, Hao Wang, SCU

Interval scheduling

The next available process is D Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

65

@ CS311, Hao Wang, SCU

Interval scheduling

The prevents us from running Process L
q We are therefore finished

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

66

@ CS311, Hao Wang, SCU

Application: Interval scheduling

We have scheduled four processes
q The selection may not be unique

Once the processes are sorted, the run time
is linear—we simply look ahead to find the
next process that can be run
q Thus, the run time is the run time of sorting

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

67

@ CS311, Hao Wang, SCU

Application: Interval scheduling

For example, we could have chosen
Process L

In this case, processor usage would go
up, but no significance is given to that
criteria

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

68

@ CS311, Hao Wang, SCU

Application: Interval scheduling

We could add weights to the individual
processes

q The weights could be the duration of
the processes—maximize processor usage

q The weights could be revenue gained from
the performance—maximize revenue

Process Interval
K 2 – 4

J 3 – 5

G 1 – 6

E 3 – 7

A 5 – 8

C 6 – 9

F 8 – 11

H 8 – 12

B 10 – 13

D 12 – 15

M 10 – 15

L 11 – 16

69

@ CS311, Hao Wang, SCU

Summary of greedy algorithms

We have seen the algorithm-design
technique, namely greedy algorithms
q For some problems, appropriately-designed

greedy algorithms may find either optimal or near-
optimal solutions

q For other problems, greedy algorithms may a poor
result or even no result at all

Their desirable characteristic is speed

70

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

We have seen four divide-and-conquer algorithms:
q Binary search
q Depth-first tree traversals
q Merge sort
q Quick sort

The steps are:
q A larger problem is broken up into smaller problems
q The smaller problems are recursively
q The results are combined together again into a solution

71

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

For example, merge sort:
q Divide a list of size n into b = 2 sub-lists of size n/2

entries
q Each sub-list is sorted recursively
q The two sorted lists are merged into a single sorted list

72

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

More formally, we will consider only those
algorithms which:
q Divide a problem into b sub-problems, each

approximately of size n/b
� Up to now, b = 2

q Solve a ≥ 1 of those sub-problems recursively
� Merge sort and tree traversals solved a = 2 of them
� Binary search solves a = 1 of them

q Combine the solutions to the sub-problems to get a
solution to the overall problem

73

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

With the three problems we have already looked at we
have looked at two possible cases for b = 2:

Merge sortb = 2a = 2
Depth-first traversalb = 2a = 2
Binary searchb = 2a = 1

Problem: the first two have different run times:
Merge sortQ(n ln(n))
Depth-first traversalQ(n)

74

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

Thus, just using a divide-and-conquer algorithm does not
solely determine the run time

We must also consider
q The effort required to divide the problem into two sub-problems
q The effort required to combine the two solutions to the sub-

problems

75

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

For merge sort:
q Division is quick (find the middle): Q(1)
q Merging the two sorted lists into a single list is a Q(n) problem

For a depth-first tree traversal:
q Division is also quick: Q(1)
q A return-from-function is preformed at the end which is Q(1)

For quick sort (assuming division into two):
q Dividing is slow: Q(n)
q Once both sub-problems are sorted, we are finished: Q(1)

76

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

Thus, we are able to write the expression as follows:
q Binary search:

Q(ln(n))

q Depth-first traversal:
Q(n)

q Merge/quick sort:
Q(n ln(n))

In general, we will assume the work done combined
work is of the form O(nk)

ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1)1(

2
T

11
)T(nn

n
n Θ

ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1)1(

2
T2

11
)T(nn

n
n Θ

ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1)(

2
T2

11
)T(nnn

n
n Θ

77

@ CS311, Hao Wang, SCU

Divide-and-conquer algorithms

Thus, for a general divide-and-conquer
algorithm which:
q Divides the problem into b sub-problems
q Recursively solves a of those sub-problems
q Requires O(nk) work at each step requires
has a run time

Note: we assume a problem of size n = 1 is solved...

()
ïî

ï
í
ì

>+÷
ø
ö

ç
è
æ

=
= 1T

11
)T(nn

b
na

n
n kO

78

@ CS311, Hao Wang, SCU

Summary of divide-and-conquer algo.

Divide-and-conquer algorithms:
q If the amount of work being done at each step to either

sub-divide the problem or to recombine the solutions
dominates, then this is the run time of the algorithm:
O(nk)

q If the problem is being divided into many small sub-
problems (a > bk) then the number of sub-problems
dominates: O(nlogb(a))

q In between, a little more (logarithmically more) work
must be done

79

@ CS311, Hao Wang, SCU

Dynamic programming

§ This topic will cover dynamic programming:
q Definitions
q An Example

� Fibonacci numbers
q Other applications

� Interval scheduling
� Project management - 0/1 knapsack problem

80

@ CS311, Hao Wang, SCU

Dynamic programming

To begin, the word programming is used by
mathematicians to describe a set of rules which
must be followed to solve a problem
q Thus, linear programming describes sets of rules

which must be solved a linear problem
q In our context, the adjective dynamic describes how

the set of rules works

81

@ CS311, Hao Wang, SCU

Dynamic programming

Dynamic programming is distinct from divide-
and-conquer, as the divide-and-conquer
approach works well if the sub-problems are
essentially unique
q Storing intermediate results would only waste memory

If sub-problems re-occur, the problem is said to
have overlapping sub-problems

82

@ CS311, Hao Wang, SCU

Fibonacci numbers

Consider this function:
double F(int n) {

return (n <= 1) ? 1.0 : F(n - 1) + F(n - 2);
}

The run-time of this algorithm is

() () ()
(1) 1

T
T 1 T 2 (1) 1

n
n

n n n
Q £ì

= í - + - +Q >î

83

@ CS311, Hao Wang, SCU

Fibonacci numbers

Consider this function calculating Fibonacci numbers:
double F(int n) {

return (n <= 1) ? 1.0 : F(n - 1) + F(n - 2);
}

The runtime is similar to the definition of Fibonacci numbers:

Therefore, T(n) = W(F(n)) = W(fn)

q In actual fact, T(n) = Q(fn), only

() () ()
(1) 1

T
T 1 T 2 (1) 1

n
n

n n n
Q £ì

= í - + - +Q >î
() () ()

1 1
1 2 1 1

n
F n

F n F n n
£ì

= í - + - + >î

()
()

lim 2
n

T n
F n®¥

=

84

@ CS311, Hao Wang, SCU

Fibonacci numbers

To demonstrate, consider:

#include <iostream>
#include <ctime>
using namespace std;

int main() {
cout.precision(16); // print 16 decimal digits of precision for doubles

// 53/lg(10) = 15.95458977...

for (int i = 33; i < 100; ++i) {
cout << "F(" << i << ") = "

<< F(i) << '\t' << time(0) << endl;
}

return 0;
}

double F(int n) {
return (n <= 1) ? 1.0 : F(n - 1) + F(n - 2);

}

85

@ CS311, Hao Wang, SCU

Fibonacci numbers

The output:
F(33) = 57028871206474355
F(34) = 92274651206474355. F(33), F(34), and F(35) in 1 s
F(35) = 149303521206474355
F(36) = 241578171206474356
F(37) = 390881691206474358
F(38) = 632459861206474360
F(39) = 1023341551206474363
F(40) = 1655801411206474368
F(41) = 2679142961206474376
F(42) = 4334944371206474389
F(43) = 7014087331206474411

F(44) = 11349031701206474469 ~1 min to calculate F(44)

ï
þ

ï
ý

ü

86

@ CS311, Hao Wang, SCU

Fibonacci numbers

Problem:
q To calculate F(44), it is necessary to calculate F(43) and F(42)
q However, to calculate F(43), it is also necessary to calculate F(42)
q It gets worse, for example

� F(40) is called 5 times
� F(30) is called 620 times
� F(20) is called 75 025 times
� F(10) is called 9 227 465 times
� F(0) is called 433 494 437 times

Surely we don’t have to recalculate F(10) almost ten
million times…

87

@ CS311, Hao Wang, SCU

Fibonacci numbers

Here is a possible solution:
q To avoid calculating values multiple times, store

intermediate calculations in a table
q When storing intermediate results, this process is

called memoization
� The root is memo

q We save (memoize) computed answers for possible
later reuse, rather than re-computing the answer
multiple times

88

@ CS311, Hao Wang, SCU

Fibonacci numbers

Once we have calculated a value, can we not store that
value and return it if a function is called a second time?
q One solution: use an array
q Another: use an associative hash table

89

@ CS311, Hao Wang, SCU

Fibonacci numbers

static const int ARRAY_SIZE = 1000;
double * array = new double[ARRAY_SIZE];

array[0] = 1.0;
array[1] = 1.0;

// use 0.0 to indicate we have not yet calculated a value
for (int i = 2; i < ARRAY_SIZE; ++i) {

array[i] = 0.0;
}

double F(int n) {
if (array[n] == 0.0) {

array[n] = F(n – 1) + F(n – 2);
}

return array[n];
}

Problems: What if you go beyond the end of the array?

What if our problem is not indexed by integers?

90

@ CS311, Hao Wang, SCU

Fibonacci numbers

Recall the characteristics of an associative container:

template <typename S, typename T>
class Hash_table {

public:
// is something stored with the given key?
bool member(S key) const;

// returns value associated with the inserted key
T retrieve(S key) const;

void insert(S key, T value);
// ...

};

91

@ CS311, Hao Wang, SCU

Fibonacci numbers

This program uses the Standard Template Library:
#include <map>

/* calculate the nth Fibonacci number */

double F(int n) {
static std::map<int, double> memo;

// shared by all calls to F
// the key is int, the value is double

if (n <= 1) {
return 1.0;

} else {

if (memo[n] == 0.0) {
memo[n] = F(n - 1) + F(n - 2);

}

return memo[n];
}

}

92

@ CS311, Hao Wang, SCU

Fibonacci numbers
This prints the output up to F(1476):

The last two lines are
F(1475) = 1.306989223763399e+308
F(1476) = inf

Exact value: F(1475) = 13069892237633993180363115538027198309839244390741264072
60066594601927930704792317402886810877770177210954631549790122762343222469369396471853667063684893626608441474
49941348462800922755818969634743348982916424954062744135969865615407276492410653721774590669544801490837649161
732095972658064630033793347171632

int main() {
std::cout.precision(16);

for (int i = 0; i < 1476; ++i) {
std::cout << "F(" << i << ") = " << F(i) << std::endl;

}

return 0;
}

93

@ CS311, Hao Wang, SCU

Summary of dynamic programming

We have considered the algorithm design
strategy of dynamic programming
q Useful when recursive algorithms have overlapping

sub-problems
q Storing calculated values allows significant reductions

in time
� Memoization

q More applications
� Interval scheduling
� Project management - 0/1 knapsack problem
� …

94

@ CS311, Hao Wang, SCU

Wrape up

§ We examined a numer of algorithm design
techniques which may, in some
circumstances provide either optimal or near-
optimal solutions
q Greedy algorithms
q Divide-and-conquer algorithms
q Dynamic programming

95

