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Abstract
Multi-view representation learning methods typi-
cally follow a consistent-and-specific pipeline that
aims at extracting latent representations for an en-
tity from its multiple observable views to facilitate
downstream tasks. However, most of them over-
look the complex underlying correlation between
different views. To solve this issue, we delve into
a well-known property of neural networks (NNs)
that NNs tend to learn simple patterns first and then
hard ones. In our case, view-consistent represen-
tations are simple patterns and view-specific rep-
resentations are hard. To this end, we propose to
disentangle view-consistency and view-specificity
and learn them gradually. Specifically, we devise a
novel curriculum learning approach that adjusts the
whole model to learn view-consistent representa-
tions first and then progressively view-specific rep-
resentations. Besides, we saddle each view with a
learnable prior that allows each view-specific rep-
resentation to appropriate its distribution. More-
over, we incorporate a mixture-of-experts layer and
a disentangling module to further enhance the qual-
ity of the learned representations. Extensive ex-
periments on five real-world datasets show that
the proposed model outperforms its counterparts
markedly. The code is available at https://github.
com/XLearning-SCU/2025-IJCAI-CL2P.

1 Introduction
Multi-view or multi-modal data such as image, text, and
audio are appealing yet challenging for real-world applica-
tions. The data often contains consistent information across
all views and complementary information for others com-
pared to single-view data. Multi-view representation learning
aims at learning latent representations from multi-view data
and later uses them for downstream tasks, e.g., text genera-
tion [Ju et al., 2021], anomaly detection [Wang et al., 2023],
and cross-modal retrieval [Ma et al., 2024].

Over the years, various multi-view representation learning
methods have been proposed. These methods generally fall
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Figure 1: Curriculum learning over view-consistency and view-
specificity. The model initially memorizes simple patterns, i.e.,
view-consistency c. As training progresses, the model gradually
memorizes hard patterns, i.e., view-specificity sv . Such a learning
strategy is similar to humans. It facilitates the model in memorizing
simple and hard patterns to enhance overall performance.

into two categories: model-based multi-view methods [Xu et
al., 2022; Yan et al., 2023; Zou et al., 2024] and information-
theory-based methods [Shi et al., 2019; Federici et al., 2020;
Sutter et al., 2024]. Among them, Federici et al. [2020]
extended the information bottleneck principle to multi-view
representation learning. Xu et al. [2022] proposed a multi-
level (low-level features, high-level features, and semantic la-
bels) representation learning framework for multi-view data.
Yan et al. [2023] presented a cross-sample and cross-view
aggregation method for representations of multi-view data.
Sutter et al. [2024] designed a data-dependent multimodal
variational prior for guiding the latent representation of each
modal towards a shared aggregate posterior. However, de-
spite the advances in these methods, there is a commonly
overlooked issue to be resolved for multi-view representa-
tion learning, i.e., the intrinsic differences between view-
consistency learning and view-specificity learning.

Multi-view data usually come from diverse sources or
views. View-consistent representation mainly extracts com-
mon correlations across all views, and view-specific repre-
sentation mines exclusive information within an independent
view. Therefore, there are intrinsic differences between view-
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consistent and view-specific representation learning, i.e., the
difficulty of view-consistency learning is lower than that of
view-specificity. Due to the intrinsic differences, the same
learning strategy may not work simultaneously for view-
consistency and view-specificity learning. However, most ex-
isting methods ignore such intrinsic differences and adopt the
same learning strategy for them, and finally result in a second-
best performance. Moreover, neural networks have an impor-
tant property that neural networks initially memorize simple
patterns and then gradually memorize hard patterns. That is,
neural networks initially focus on learning simple features of
the data. As training progresses, the networks start to grad-
ually model hard and complex features. Applying a simul-
taneously uniform learning strategy to both view-consistency
(i.e., simple patterns) and view-specificity (i.e., hard patterns)
would conflict with the inherent property of neural networks
and then degrade the efficacy of data on downstream tasks.

To deal with the aforementioned issues, we propose to dis-
entangle view-consistency and view-specificity, and devise
an innovative Curriculum Learning model with Learnable
Prior (denoted as CL2P). As shown in Figure 1, curriculum
learning has scheduled parameters over epochs to adjust the
model first to learn simple view-consistent representations
and then to learn hard view-specific representations progres-
sively, which we call progressive curriculum learning. Such
a learning manner exactly fits this property of neural net-
works. Meanwhile, to enhance view-consistency, we saddle
the model with a novel Mixture-of-Experts (MoE) layer. The
MoE layer boosts the fusion of multi-view data. To enhance
view-specificity, we further introduce a learnable prior. The
learnable prior allows view-specific representation from each
view to fit its optimal distribution. Moreover, to avoid inter-
ference between view-consistency and view-specificity, we
delve into mutual information and propose to minimize the
upper bound of it to disentangle view-consistent and view-
specific representations.

In summary, we make the following contributions:
• We explore a well-known property of neural networks

that neural networks fit simple patterns first and then
hard ones. To our knowledge, this is the first work to
investigate this property of neural networks in the con-
text of multi-view representation learning.

• We propose a novel curriculum learning model called
CL2P. The CL2P exhibits an innovative amalgama-
tion of curriculum learning, mixture-of-experts learning,
learnable prior, representation disentangling, and a joint
loss function in wrapping up all components.

• We evaluate our CL2P using five real-world multi-view
datasets. Extensive experimental results demonstrate the
effectiveness of the proposed method and its superior
performance in comparison to baselines.

2 Related Work
Multi-view Autoencoders. Multi-view autoencoders
(MVAE) are employed to model datasets that originate from
multiple sources or views. MVAEs are particularly useful for
representation learning, understanding the relationships be-
tween different views, and generating missing data. Existing

MVAE-based methods can be classified into two categories:
model-based MVAE [Xu et al., 2022; Li et al., 2023;
Hu et al., 2023; Lu et al., 2024], and information-theory-
based MVAE [Shi et al., 2019; Federici et al., 2020;
He et al., 2024; Sutter et al., 2024].

Our method falls into the category of information-theory-
based MVAE. We leverage the principles of information the-
ory to address the issue of optimal distributions for view-
specific representations from different views, enhancing rep-
resentation performance and decreasing the learning com-
plexity of view-specificity. In addition, we propose a progres-
sive curriculum learning strategy to tackle the heterogeneity
between view-consistent and view-specific representations.
Curriculum Learning. Curriculum learning (CL) is a
training strategy that trains a machine learning model from
easier data to harder data, which imitates the meaningful
learning order in human curricula [Bengio et al., 2009;
Soviany et al., 2022]. To date, most CL methods are de-
signed by following the pipeline of a difficulty measurer and
a training scheduler. The difficulty measurer is used to mea-
sure the hard level of each data to decide learning priority.
The training scheduler determines the timing for feeding hard
data into the training process. Regarding whether these two
components are designed in a data-driven automated manner,
CL can be broadly categorized into two types: predefined CL
and automatic CL [Wang et al., 2021].

Our method proposes a progressive curriculum learning
strategy that extends the concept and applications of prede-
fined CL. In our method, the intrinsic differences (i.e., learn-
ing priority) between view-consistency and view-specificity
are determined based on human prior knowledge.The train-
ing scheduler is an adaptive trade-off parameter over epochs.
Prior Learning. Prior learning (PL) is a critical part of
variational inference. PL has emerged as an approach to refin-
ing variational inference models [Xu et al., 2019]. It enhances
the quality of learned representations by improving the evi-
dence lower bound (ELBO). For example, Bauer et al. [2019]
designed a learned acceptance function to reweight the pro-
posal. Similarly, Takahashi et al. [2019] presented an im-
plicit optimal prior for variational autoencoders. This implicit
prior uses the density ratio trick. Building upon prior learn-
ing ideas, we novelly use a learnable prior based on pseudo-
inputs. Our method is the first to extend the concept of prior
learning to multi-view settings. The prior learning enables
each view-specificity to discover its optimal distribution.

3 Methodology
Definition 1 (Problem Statement). Given a set of multi-view
data with n samples and m views D = {xi|x1

i , ...,x
m
i }ni=1,

the dataset is used to train a model (e.g., our CL2P). The
trained model is then employed to derive high-quality view-
consistent representation and view-specific representation for
downstream tasks (e.g., clustering and classification).
Overall Architecture. Figure 2 illustrates the architec-
ture of the proposed CL2P, comprising four novel com-
ponents: Curriculum Learning, Mixture-of-Experts (MoE),
Prior Learning, and Disentangling module. Specifically, cur-
riculum learning guides the whole model to first learn the
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Figure 2: An overview of the proposed CL2P. It mainly consists of four parts: 1) Curriculum learning, which adjusts the whole model to first
learn the simple view-consistent representations c and then hard view-specific representations {sv}mv=1 progressively, 2) Mixture-of-Experts
(MoE), which integrates all views into a consistent representation c for multi-view data, 3) Pseudo-inputs, which together with view-specific
representation learning drive optimal prior for different views, and 4) Disentangling module, which reduces the redundancy between view-
consistent representation c and view-specific representation {sv}mv=1. [Best viewed in color]

simple consistent representations and then pay attention to
the hard view-specific ones progressively. In practice, the
losses of view-consistency and view-specificity are adjusted
by curriculum learning using an adaptive trade-off parameter
λ, where λ is automatically generated by the “Scheduler” ac-
cording to the training progress. In view-consistent represen-
tation learning, we use a shared encoder Ec to extract view-
consistent representations from all views. Then, we use a
MoE layer to fuse these representations by adaptively weight-
ing each expert’s output. Finally, the fused consistent repre-
sentation c serves as input for decoders {Dv

c}mv=1, generating
reconstructed views. In view-specific representation learn-
ing, we leverage a set of view-specific encoders {Ev

s }mv=1 to
extract view-specific representations {sv}mv=1. Meanwhile,
we allocate the pseudo-inputs for view data xv . The pseudo-
inputs serve as auxiliary elements for learning an optimal
prior for the view-specific representation sv . For the v-th
view-specificity, sv and c are concatenated as the input to the
v-th view-specific decoder Dv

s . Moreover, to prevent the mu-
tual dilution between view-consistency and view-specificity,
we use a disentangling module to minimize the redundancy
between these two aspects. For efficiency, we adopt varia-
tional autoencoders [Kingma, 2013] to construct the model.
Next, we elaborate on our solutions for each component.

Property 1. DNNs tend to prioritize memorization of simple
instances first and then gradually memorize hard instances
[Zhang et al., 2017; Arpit et al., 2017; Kumar et al., 2024].

3.1 Progressive Curriculum Learning
According to Property 1, DNNs tend to initially focus on
learning simple patterns from the data, and then to fit more
complex features within the data. We revisit this property in

the context of multi-view representation learning. As afore-
mentioned, there are intrinsic differences in the learning of
view-consistency and view-specificity. In this work, we pro-
pose a progressive curriculum learning method to shift the
learning attention of the networks from view-consistency to
view-specificity. That is, the progressive curriculum learn-
ing method aims at first learning view-consistent represen-
tations and then gradually learning view-specific representa-
tions. To this end, we design an adaptive trade-off parameter
λ to schedule the network parameters and losses produced
by these two parts. During the training stage, the Lossc
on learning view-consistent representations is weighted by
λ, while the Losss on learning view-specific representations
is weighted by 1 − λ. Thus, the overall loss of model is
λLossc +(1−λ)Losss. The scheduler of λ is formulated as
follows:

λ = 1−
(
T
Tmax

)2

, (1)

where Tmax is the number of total training epochs and T
is the current epoch. λ gradually decreases as the training
epochs increase. The changes of λ ultimately affect the atten-
tion on network parameter updates.

The proposed curriculum learning shifts the learning “at-
tention” between simple view-consistent representations and
hard view-specific representations. This approach, which is
closely aligned with the Property 1 of DNNs, is beneficial for
fully extracting patterns from multi-view data. Furthermore,
λ controls the parameter updating for each part, thereby pre-
venting damage to the consistent representations while em-
phasizing view-specific representations at the later stages of
training. Next, we delve into the details of view-consistent
and view-specific representation learning.



3.2 Mixture of Consistent Posteriors
For view-consistency learning, we assign each view an “ex-
pert” to model its posterior distribution, and then combine
these individual posteriors as follows

qϕc
(c|{xv}mv=1) =

m∑
v=1

wvqϕc
(c|xv), (2)

where ϕc are the trainable parameters of consistent encoder
Ec(·). Using a Gaussian distribution as the probability distri-
bution for view-consistency c, we refine Eq. (2) as

µc =
m∑

v=1

wvµ
c
v, σ

v =
m∑

v=1

wvσ
c
v, (3)

where [µc, σv] is the mixture-of-posteriors (“experts”).
[µc

v, σ
v
v ] is the v-th posterior (“expert”) and [µc

v, σ
v
v ] =

E(xv). W =
[
w1, · · · , wm

]
is the parameters of the router in

the mixture-of-posteriors. The weights W are obtained using
a softmax function over the outputs of a gating network:

W = Softmax(GatingNet({[µc
v, σ

c
v]}mv=1)). (4)

The mixture-of-posteriors assigns posterior distributions of
different views to multiple experts. Each expert focuses on a
corresponding view, and the gating network integrates these
learned representations. In such a manner, the approach ex-
tracts consistent information across all views.

To infer view-consistent representation c from mixture-of-
posteriors, we utilize reparameterization trick

qϕc
(c|{xv}mv=1) = N (µc, (σc)2) = µc + σcϵc, (5)

where ϵc ∼ N (0, 1). After obtaining the view-consistent
representations c, we adopt a series of decoders {Dv

c (·)}mv=1
to reconstruct view-specific content. This design allows the
model to preserve the view-specific detail in the reconstruc-
tions when aligning the view-consistency across views.

Then, we can derive the ELBO of view-consistency as
shown below

Lc({xv}) =
m∑

v=1

Eqϕc (c|{xi}m
i=1)

[log pθc(x
v|c)]

−KL(qϕc
(c|{xv}mv=1)∥p(c)),

(6)

where θc are the trainable parameters of view-consistent de-
coders {Dv

c (·)}mv=1. KL(·) denotes the KL divergence. Dur-
ing the inference stage, we discard the view-consistent de-
coder and solely utilize the consistent encoder Ec(·) to obtain
the consistent representations, i.e., c = Ec({xv}mv=1).

3.3 View-specific Prior Learning
For view-specificity learning, we employ a set of view-
specific encoders {Ev

s (·)}mv=1 to obtain coarse view-specific
representations sv for each view. Then we concatenate the
above-mentioned view-consistent representations and these
view-specific representations, formulated as zv = [c, sv],
which is the input to the view-specific decoders {Dv

s (·)}mv=1.
The loss function for this process is shown as follows

Ls(x
v) = Eqϕs (z

v|xv) [log pθs(x
v|zv)]

−KL(qϕs(s
v|xv)∥p(sv)).

(7)

We rewrite the KL divergence term in Eq. (7) to provide a
more interpretable form, introducing two regularization terms
instead of a single KL divergence term:

KL(qϕs(s
v|xv)∥p(sv)) = Eq(sv) [−log p(sv)]

−H [qϕs
(sv|xv)] ,

(8)

where the first is the cross-entropy between the aggre-
gated posterior and the prior p(sv), and the second is
the entropy of the variational posterior. Here, q(sv) =
1
n

∑n
i=1 qϕs(s

v|xv
i ) [Makhzani et al., 2015]. Typically, the

prior is predefined, often chosen as a standard normal distri-
bution. Notably, we find an optimal prior that optimizes the
ELBO by minimizing the following Lagrange function:

min
p(sv)

Eq(sv) [−log p(sv)] + β(

∫
p(sv)dsv − 1). (9)

where β is the Lagrange multiplier ensuring the proper nor-
malization p(sv). The solution to this problem is the aggre-
gated posterior p∗(sv) = 1

n

∑n
i=1 qϕs

(sv|xv
i ), indicating that

the optimal prior aligns with the aggregated posterior.
Based on the p∗(sv), we can get a new prior for view-

specific representations sv . However, directly using the ag-
gregated posterior as a prior can lead to challenges such as
overfitting, high computational complexity, and unlearnabil-
ity. To mitigate these challenges, the optimal solution can be
further approximated by a series of pseudo-inputs:

p(sv) =
1

K

K∑
k=1

qϕs
(sv|uv

k), (10)

where K is the number of pseudo-inputs, and uv
k is a pseudo-

input with the same shape as the real input xv
i . These pseudo-

inputs are learnable parameters, optimized via backpropaga-
tion. The learned pseudo-inputs represent typical patterns
in the data distribution. So they effectively act as hyperpa-
rameters for the prior distribution. Overall, by substituting
Eq. (10) into Eq. (7), we derive the loss function of the v-th
view-specificity. This loss harmonizes prior learning and rep-
resentation learning. Learnable priors facilitate the quality of
view-specific representations. During the inference stage, we
solely utilize the view-specific encoder Ev

s (·) to obtain the
v-th view-specific representations, i.e, sv = Ev

s (x
v).

3.4 Representation Disentangling
For disentangling view-consistent and view-specific repre-
sentations, we propose to minimize the upper bound of mu-
tual information (MI) between sv and c. The MI between two
variables is typically formulated as

I(sv, c)=Ep(sv,c)

[
log

p(sv, c)

p(sv)p(c)

]
=Ep(sv,c)

[
log

q(sv|c)
p(sv)

]
.

(11)
However, the conditional probability q(sv|c) is unknown.

To address this issue, we adopt contrastive log-ratio upper
bound (CLUB) [Cheng et al., 2020], which uses a variational
distribution qθ(s

v|c) to approximate q(sv|c), as shown below

ICLUB(s
v, c) = Ep(sv,c) [log qθ(s

v|c)]
− Ep(sv)Ep(c) [log qθ(s

v|c)]
≥ I(sv, c).

(12)



Given Eq. (12), we then define disentangling loss Ld as

Ld(x
v) = ICLUB(s

v, c). (13)

Objective Function. Finally, merging the Eq. (6), Eq. (7)
and Eq. (13) via the adaptive parameter λ, we have the joint
loss function of our CL2P as follows

L({xv})=λLc({xv})+(1−λ)
m∑

v=1

(Ls(x
v)+Ld(x

v)). (14)

We denote that the joint loss function leverages an adap-
tive parameter λ to make the learning of c and {sv}mv=1 con-
form to the Property 1 of neural networks. In addition, the
training pseudo-code of the proposed CL2P is outlined in Al-
gorithm 1, which describes the steps for updating the model
parameters by optimizing the total loss function.

Algorithm 1 Training of the proposed CL2P.
Input: Multi-view dataset D = {x1, · · · ,xm}.
Parameter: Total training epochs Tmax, current train-
ing epoch T , K pseudo-inputs of each view, parameters
θc, ϕc, θs, ϕs of encoders and decoders.
Output: View-consistent representations c, and view-specific
representations {sv}mv=1.

1: Initial the K pseudo-inputs for each view
2: while T ≤ Tmax do
3: c← Ec({xv}mv=1), and {sv}mv=1 ← {Ev

s (x
v)}mv=1

4: Compute the consistency-loss Lc using Eq. (6)
5: Compute the specificity-loss Lv

s using Eq. (7)
6: Compute the disentangling-loss Lv

d using Eq. (13)
7: Update T ← T + 1, λ← 1− ( T

Tmax
)2

8: Compute the total loss Lmodel using Eq. (14) via λ
9: Update θc, ϕc, θs, ϕs←∆Lmodel(θc, ϕc, θs, ϕs)

10: end while
11: return c and {sv}mv=1

4 Experiments
4.1 Experimental Setup
Datasets. We evaluate our CL2P and other competitive
methods using five real-world datasets, including: (1) Edge-
MNIST [LeCun et al., 1998], which consists of 0-9 grayscale
digit images. The views contain the original digit images and
the edge-detected version. (2) Edge-Fashion [Xiao et al.,
2017], containing grayscale images of various fashion cloth-
ing. We generate the second view by applying the same edge-
detection technique used in Edge-MNIST; (3) Multi-COIL-
20 [Nene et al., 1996b], which contains grayscale images of
20 distinct objects, captured from multiple angles. We con-
struct a three-view dataset by randomly grouping the images
of each object into three groups. (4) Multi-COIL-100 [Nene
et al., 1996a] which depicts from different angles containing
RGB images of 100 items. Similar to Multi-COIL-20, we
create a three-view dataset by randomly grouping the images
of an object into three different groups; (5) Multi-Office-
31 [Saenko et al., 2010], which consists of objects commonly
encountered in office settings, from three distinct domains

(Amazon, DSLR, and Webcam). We construct a three-view
dataset with each domain serving as a view. A summary of
the statistics for these datasets is shown in Table 1.

Dataset Samples Views Classes Size

Edge-MNIST 70,000 2 10 32 × 32
Edge-Fashion 70,000 2 10 32 × 32

Multi-COIL-20 480 3 20 64 × 64
Multi-COIL-100 2,400 3 100 64 × 64
Multi-Office-31 2,817 3 31 64 × 64

Table 1: A summary of dataset statistics.

Baselines. We compare CL2P against three categories of
baseline methods, namely, i) single-view learning methods:
Beta-VAE [Higgins et al., 2017] and Joint-VAE [Dupont,
2018]; ii) model-based multi-view methods: MFLVC [Xu
et al., 2022], GCFAgg [Yan et al., 2023], SCM [Luo et al.,
2024], and CSOT [Zhang et al., 2024]; and iii) information-
theory-based methods: MVAE [Wu and Goodman, 2018],
DVIB [Bao, 2021], Multi-VAE [Xu et al., 2021], and
MRDD [Ke et al., 2024]. Our method falls into the third cat-
egory. Additionally, we evaluate two variants of our method:
CL2P-C, which uses only view-consistent representations c,
and CL2P-CS, which incorporates both view-consistent rep-
resentations c and view-specific representations {sv}mv=1.

Implementation Details. We implement the proposed
method and other comparison methods on PyTorch 2.1.0, uti-
lizing one NVIDIA A10 GPU (24 GB). We employ convolu-
tional networks [He et al., 2016] to construct our model, with
a uniform encoder-decoder architecture across all datasets.
Both view-consistency and view-specificity dimensions are
set to 20. The number of pseudo-inputs is fixed at 250, initial-
ized with randomly selected training data. We train our model
for 200 epochs using the AdamW optimizer with the learning
rate of 1 × 10−4 and a weight decay of 1 × 10−4. We set
a batch size of 128 for Edge-MNIST and Edge-Fashion, and
32 for Multi-COIL-20, Multi-COIL-100, and Multi-Office-
31. For all baseline models, we use the optimal settings as
recommended in the original paper for fair comparison.

4.2 Experimental Results
Task Settings. We evaluate all baseline models across five
datasets for both clustering and classification tasks. For clus-
tering, we use the k-means algorithm [Hartigan and Wong,
1979]. For classification, we apply support vector classifi-
cation (SVC) [Hsu, 2003] with an 80:20 train-test split ra-
tio. We use Accuracy (ACC) as the metric to evaluate the
performance of each model for both clustering and classifi-
cation tasks on five datasets. Each model is evaluated over
10 runs, and we report the average values along with the vari-
ances. Notably, for single-view methods, we select the results
from the best view as the evaluation outcome. For multi-view
methods limited to two views, we choose the optimal pair of
views as inputs for the models.

Overall Evaluation. Tables 2 and 3 show the performance
of clustering and classification tasks, respectively. From the



Methods
Edge-MNIST Edge-Fashion Multi-COIL-20 Multi-COIL-100 Multi-Office-31

Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

Beta-VAE [Higgins et al., 2017] 61.36±0.58 53.92±0.93 56.36±0.50 55.21±0.95 67.19±0.41 77.80±0.90 59.48±0.60 80.62±0.35 23.98±0.48 28.12±0.26
Joint-VAE [Dupont, 2018] 24.50±0.69 14.58±0.30 33.59±0.62 24.10±0.85 51.43±0.93 64.46±0.89 44.38±0.55 70.71±0.38 18.95±0.50 27.24±0.30

MFLVC† [Xu et al., 2022] 33.62±0.83 29.00±0.93 26.95±0.94 27.03±0.24 54.69±0.77 75.07±0.49 34.34±0.39 81.97±0.06 24.39±0.51 34.79±0.30
GCFAgg† [Yan et al., 2023] 32.46±0.80 24.93±0.78 37.75±0.60 34.83±0.76 67.58±0.83 78.77±0.57 59.76±0.97 82.16±0.32 34.61±0.90 45.55±0.56
SCM† [Luo et al., 2024] 34.57±0.92 29.58±0.95 35.23±0.55 32.16±0.20 58.59±0.83 68.08±0.53 58.29±0.73 81.72±0.39 15.53±0.57 21.01±0.40
CSOT† [Zhang et al., 2024] 32.55±0.78 32.35±0.49 37.36±0.76 37.80±0.91 49.16±0.87 63.15±0.70 53.01±0.91 75.17±0.33 12.32±0.43 15.48±0.17

MVAE [Wu and Goodman, 2018] 51.12±0.61 45.15±0.62 52.67±0.78 55.25±0.71 69.86±0.98 77.32±0.98 65.98±0.70 84.74±0.61 35.25±0.97 46.24±0.94
DVIB [Bao, 2021] 29.67±0.96 20.00±0.94 31.99±0.88 23.51±0.96 52.86±0.94 67.43±0.73 48.45±0.89 73.13±0.42 15.92±0.45 22.10±0.46
Multi-VAE [Xu et al., 2021] 59.60±0.73 61.71±0.56 44.19±0.27 40.69±0.29 68.35±0.82 79.91±0.71 46.74±0.94 70.01±0.66 27.69±0.72 33.30±0.58
MRDD [Ke et al., 2024] 69.88±0.28 64.18±0.52 58.83±1.00 60.51±0.94 68.96±0.98 79.42±0.86 64.06±0.96 84.64±0.56 31.90±0.95 40.22±0.62

CL2P-C (Ours) 63.93±0.95 58.91±0.98 57.17±0.52 62.45±0.88 73.40±0.61 83.24±0.69 67.68±0.81 85.71±0.56 29.54±0.90 37.31±0.69
CL2P-CS (Ours) 72.22±0.41 67.50±0.91 60.74±0.85 65.53±0.99 69.79±0.21 80.39±0.91 61.42±0.90 82.74±0.42 37.19±0.94 50.57±0.74

SOTA +2.34 +3.32 +1.91 +5.02 +3.54 +3.33 +1.70 +0.97 +1.94 +4.33

Table 2: Clustering results (%) on five datasets. Bold indicates the best results, while underline marks the second-best results. Dagger
footnote † denotes that the dimensionality of the latent representations is set to 20.

Methods
Edge-MNIST Edge-Fashion Multi-COIL-20 Multi-COIL-100 Multi-Office-31

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Beta-VAE [Higgins et al., 2017] 94.00±0.16 93.39±0.16 80.84±0.34 80.58±0.31 88.74±0.61 86.58±0.86 79.27±0.94 75.84±0.79 40.00±0.76 36.62±0.61
Joint-VAE [Dupont, 2018] 95.30±0.22 95.26±0.22 79.82±0.32 79.57±0.24 53.68±0.61 47.28±0.58 36.20±0.85 26.48±0.88 25.67±0.98 22.08±0.87

MFLVC† [Xu et al., 2022] 55.30±0.40 54.09±0.44 41.95±0.33 37.44±0.16 55.84±0.66 49.88±0.61 29.84±0.89 20.13±0.83 32.02±0.97 28.61±0.70
GCFAgg† [Yan et al., 2023] 75.86±0.36 75.40±0.32 78.85±0.29 78.46±0.33 61.69±0.61 56.85±0.56 48.37±0.91 39.82±0.97 54.38±0.67 51.43±0.51
SCM† [Luo et al., 2024] 89.39±0.25 89.22±0.25 81.56±0.31 81.28±0.31 78.79±0.97 78.99±0.94 63.54±0.21 55.69±0.84 21.89±0.77 19.61±0.93
CSOT† [Zhang et al., 2024] 54.83±0.33 52.24±0.34 58.86±0.35 54.02±0.35 35.06±0.61 26.35±0.71 33.16±0.99 25.99±0.99 25.10±0.87 22.26±0.75

MVAE [Wu and Goodman, 2018] 97.76±0.15 97.74±0.15 88.93±0.18 88.89±0.17 93.37±0.89 91.17±0.90 92.23±0.92 91.60±0.91 88.41±0.63 88.96± 0.86
DVIB [Bao, 2021] 76.19±0.43 75.79±0.39 71.68±0.36 72.62±0.39 71.86±0.97 69.24±0.87 72.69±0.93 70.57±0.70 37.03±0.74 36.70±0.97
Multi-VAE [Xu et al., 2021] 95.76±0.15 95.72±0.15 84.69±0.23 84.43±0.19 88.31±0.58 85.76±0.93 74.93±0.62 72.58±0.97 61.46±0.65 61.73±0.87
MRDD [Ke et al., 2024] 98.53±0.10 98.52±0.10 88.81±0.29 88.73±0.30 94.38±0.97 95.67±0.96 91.11±0.86 90.50±0.76 82.46±0.91 81.31±0.86

CL2P-C (Ours) 98.67±0.10 98.65±0.10 89.35±0.24 89.28±0.26 96.36±0.78 96.40±0.99 93.12±0.84 92.56±0.73 73.99±0.95 73.18±0.98
CL2P-CS (Ours) 98.50±0.09 98.49±0.10 90.56±0.28 90.46±0.29 92.40±0.83 92.78±0.95 89.81±0.98 89.69±0.85 93.42±0.95 93.05±0.75

SOTA +0.14 +0.13 +1.63 +1.57 +1.98 +0.73 +0.89 +0.96 +5.01 +4.09

Table 3: Classification results (%) on five datasets. Bold indicates the best results, while underline marks the second-best results. Dagger
footnote † denotes that the dimensionality of the latent representations is set to 20.

results, we have the following observations: (1) The pro-
posed CL2P is superior to all baseline methods. The results
show the effectiveness of the proposed method. (2) CL2P-
C outperforms CL2P-CS on the Multi-COIL-20 and Multi-
COIL-100 datasets, which indicates that naive concatenation
may degrade the overall quality of representation. (3) Single-
view methods are inferior to multi-view methods in most
cases. On the contrary, single-view methods sometimes out-
perform certain multi-view methods. The reason might be
due to that some specific views are dominant and those multi-
view methods struggle to handle data with significant view-
specific differences. (4) Information-theory-based methods
generally outperform model-based methods, indicating that
information-theoretic constraints guide the model to learn
higher-quality representations. Nevertheless, those methods
overlook the inherent properties of neural networks and thus
fail to surpass our method.

Ablation Study. We conduct an ablation study to measure
the contribution of the four key components, i.e., curricu-
lum learning (CL), prior learning (PL), disentangling learn-
ing (DL), and Mixture-of-Experts (MoE), in our CL2P-CS
method. We remove each component from CL2P-CS and
then evaluate the performance of each resulting variant on
five datasets using the clustering performance. The ablation
results are shown in Table 4. From the results, we can see that
every component in our model plays an important role. This
shows that all components in our model are essential. For
the datasets Multi-COIL-100 and Multi-Office-31, the abla-
tion results show slight differences. This indicates that more
advanced encoders and decoders may be required to enhance
the model’s capability for information extraction.

Scheduler Ablation. We explore several different strate-
gies to generate the adaptive trade-off parameter λ, including
line decay (λ = 1 − T

Tmax
), cosine decay (λ = 0.5 · cos(π ·
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Figure 3: Study of different schedulers on curriculum learning.
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Figure 4: Different metrics against the number K of pseudo-inputs.

Methods MNIST Fashion COIL-20 COIL-100 Office-31

CL2P-CS 72.22 60.74 69.79 61.42 37.19
w/o CL 66.39 60.26 68.39 60.43 36.72
w/o PL 70.19 59.87 67.83 60.98 36.83
w/o DL 63.35 58.16 67.36 60.06 36.52

w/o MoE 70.48 60.44 66.54 60.85 36.11

Table 4: Component ablation on the proposed model. Clustering
accuracy scores (%) on five datasets. Best results are in bold.

T
Tmax

) + 0.5), exponential decay (λ = e−2π·( T
Tmax

)), and
identity (λ = 0.5), in our CL2P-CS. The results are shown
in Figure 3. Figure 3(a) illustrates the variation of λ with re-
spect to different schedulers. Figures 3(b) and 3(c) present
the performance for each scheduler. From the results, we
observe that a slower decay rate for parameter λ yields bet-
ter performance. When λ decays too rapidly, it prematurely
shifts the attention of networks away from view-consistency.
The premature shift reduces the quality and effectiveness of
consistency, leading to a decline in overall representations.

Study on the number of pseudo-inputs K. We investigate
the effect of parameter K by conducting a grid search of the
settings {0, 50, 100, 150, 200, 250, 300, 350, 400}, in the
CL2P-CS method. The results are shown in Figure 4. We

find that the model remains robust with a wide range of pa-
rameter values, e.g., [150, 350]. However, both excessive and
insufficient numbers of pseudo-inputs lead to suboptimal per-
formance. Additionally, certain settings may introduce side
effects on the performance. Therefore, the selection of the K
value is crucial to the overall performance of the model.

5 Conclusion

In this paper, we proposed a novel multi-view representa-
tion learning framework called CL2P. Specifically, we ex-
tend curriculum learning to tackle the intrinsic differences be-
tween view-consistency learning and view-specificity learn-
ing. Moreover, we devise a learnable prior for view-specific
representations from different views. Additionally, we sad-
dle the model with a mixture-of-experts layer and a disen-
tangling module to enhance the representation quality. We
evaluated CL2P and baseline methods on clustering and clas-
sification tasks. The results show that CL2P outperforms
baselines markedly on five real-world datasets. In the future,
we plan to integrate more advanced encoders-decoders into
CL2P to enhance representational capability, particularly for
multi-modal data. We also intend to explore CL2P in incom-
plete multi-view and semi-supervised learning settings.
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