
Learning Robust Multi-view Representation Using Dual-masked VAEs

Jiedong Wang1 , Kai Guo1 , Peng Hu1 , Xi Peng1,2 , Hao Wang1∗

1College of Computer Science, Sichuan University, China
2National Key Laboratory of Fundamental Algorithms and Models for Engineering Numerical

Simulation, Sichuan University, China
{wangjd.cs, kaiguo.gm, penghu.ml, pengx.gm, cshaowang}@gmail.com

Abstract

Most existing multi-view representation learning
methods assume view-completeness and noise-free
data. However, such assumptions are strong in real-
world applications. Despite advances in methods
tailored to view-missing or noise problems individ-
ually, a one-size-fits-all approach that concurrently
addresses both remains unavailable. To this end,
we propose a holistic method, called Dual-masked
Variational Autoencoders (DualVAE), which aims
at learning robust multi-view representation. The
DualVAE exhibits an innovative amalgamation of
dual-masked prediction, mixture-of-experts learn-
ing, representation disentangling, and a joint loss
function in wrapping up all components. The
key novelty lies in the dual-masked (view-mask
and patch-mask) mechanism to mimic missing
views and noisy data. Extensive experiments on
four multi-view datasets show the effectiveness
of the proposed method and its superior perfor-
mance in comparison to baselines. The code
is available at https://github.com/XLearning-SCU/
2025-IJCAI-DualVAE.

1 Introduction
Many applications face the situation where each data in-
stance in a set X = {𝑥1, ..., 𝑥𝑛} is sampled from multiple
views or even multiple modalities. Here each 𝑥𝑖 |𝑁𝑖=1 is de-
noted by multiple views, e.g., 𝑚 views {𝑥1

𝑖
, ..., 𝑥𝑚

𝑖
}. Such

forms of data are referred to as multi-view data. Multi-
view data provide richer and more comprehensive informa-
tion from raw features within data objectives compared to
single-view data [Liang et al., 2024; Yang and Wang, 2018].
As a cutting-edge research topic, multi-view representation
learning (MvRL) addresses the motivation of discovering a
shared representation from different views with the complex
underlying correlation [Zheng et al., 2023; Wang et al., 2015]
and later adapting it for downstream tasks, such as human ac-
tivity recognition [Yadav et al., 2021], 3D reconstruction [Xie
et al., 2019] and anomaly detection [Wang et al., 2023].
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Over the years, MvRL has showcased promising perfor-
mance, along with its potential to inspire research in the realm
of multi-view or multi-modal AI. MvRL methods primarily
focus on learning shared information (i.e., view consistency)
among views and distinctive information (i.e., view speci-
ficity) within each view [Xu et al., 2021; Ke et al., 2024].
Most of them assume that all views are complete and data
are noise-free, involving a conditional scenario that we call
closed multi-view setting. However, the closed multi-view
setting is too limited for real-world applications as it fre-
quently happens that some data instances are not sampled in
certain views and data features are corrupted by noise, which
refers to a more realistic scenario that we call generic multi-
view setting. This paper is concerned with view-missing and
sample-noise problems in such a generic setting.

View-missing and sample-noise would disturb multi-view
data, and sequentially impact the data’s benefit for down-
stream tasks. To date, some efforts have been devoted to
solving view-missing issues [Zhang et al., 2018; Wen et al.,
2019; Zhang et al., 2020] and devising noise-tolerance multi-
view models [Yue et al., 2019]. It is worth noting that the
existing methods can only tackle view missingness or noise
robustness, rather than addressing both of them within a uni-
fied framework. That is, the robustness of a unified model
for both cases is still challenging and non-trivial in practice.
Specifically, there are three major challenges: 1) view repre-
sentation, 2) view fusion, and 3) view disentangle, due to the
problems of view-missing and noisy data.

As expatiated above, there is no existing work that can
address all issues holistically using a single model in the
generic multi-view setting. In this work, we aim to deal with
view-missing and sample-noise problems using a holistic
model. To this end, we propose Dual-masked Variational Au-
toencoders (DualVAE), which jointly aim at learning robust
view-consistent and view-specific representations. Our main
ideas here are three-fold: dual-masked prediction, mixture-of-
experts learning, and representation disentangling. We will
expatiate on each of them shortly. In a nutshell, the pipeline
of the proposed DualVAE is as follows: i) view-specific en-
coders take the input of each view and learn view-specific rep-
resentation against view-specific noise within each view, ii) a
consistent encoder with dual-masked prediction and mixture-
of-experts learning for processing all views, yielding robust
view-consistent representations, and iii) a disentangled mod-
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ule that minimizes the upper-bound of mutual information to
disentangle view-consistent and view-specific representations
such that the distribution of view-consistency can be maxi-
mized to differ from the view-specific information of each
view, thereby extracting robust shared information.

In summary, we make the following contributions:

• We delve into multi-view representation learning in a
generic multi-view setting, and propose a robust multi-
view representation learning method called DualVAE to
solve both view-missing and sample-noise problems.

• We devise a novel dual-masked mechanism, together
with a Mixture-of-Experts layer and a disentangle learn-
ing module in addressing the distinct challenges posed
by view-missing and sample-noise in multi-view data.

• Experimental results using four real-world datasets
demonstrate the proposed DualVAE outperforms base-
line methods dramatically.

2 Related Work
Multi-view Representation Learning. The objective of
multi-view representation learning (MvRL) is to extract high-
quality feature representations from diverse sources of data
for downstream tasks [Wang et al., 2015; Chen et al., 2022;
Yacobi et al., 2024]. In recent years, exciting progress has
been achieved in MvRL by assuming view-completeness and
noise-free multi-view data [Hwang et al., 2021; Xu et al.,
2022; Ke et al., 2024]. However, MvRL encounters the chal-
lenge of poor quality on input data such as view-missing
and sample-noise [Li et al., 2018]. As for their specific
objectives, the methods dedicated to improving model ro-
bustness can be generally categorized into the following two
types: 1) incomplete MvRL methods that aim at learning
view-common information across observable views to han-
dle incomplete information such as partially aligned or par-
tially missingness in multi-view data [Zhang et al., 2018;
Wen et al., 2019; Zhang et al., 2020], and 2) noise-robust
MvRL methods that focus on employing specific methods
like filtering noises and disentangling noises to address data
noises in different views [Yue et al., 2019; Fan et al., 2023;
Wang et al., 2025].

It is worth noting that existing MvRL methods rarely con-
sider a generic multi-view setting where the data encounter
both view-missingness and sample-noise problems. Our ap-
proach is a holistic method that can handle both of them.

Multi-view VAE. With the advancement of generative
models, variational autoencoders (VAE) technologies have
been introduced into the realm of multi-view research, called
multi-view VAE. Multi-view VAE typically extracts general-
izable representations by learning a joint distribution of multi-
view data [Daunhawer et al., 2021; Sutter et al., 2021]. Fol-
lowing Wu and Goodman [2018], existing multi-view VAE
methods show promising results for learning high-quality
representations across multiple views, which is beneficial for
downstream tasks such as clustering and classification [Shi et
al., 2019; Sutter et al., 2020; Sutter et al., 2021].

Some efforts have also been devoted to learning latent rep-
resentations from the subsets of observable views to address

missing views [Wu and Goodman, 2018; Vedantam et al.,
2017; Shi et al., 2019; Sutter et al., 2021]. However, their
computational cost increases significantly as the combinato-
rial number of views increases, which leads to a decrease in
efficiency. Our approach adopts a dual-masked mechanism,
which deals with both view-missing and sample-noise prob-
lems without increasing such combinatorial computing cost.

Masked VAE. Masking technique is a self-supervised
learning (SSL) method that randomly masks some partial in-
formation (e.g., words in a sentence or patches in an im-
age) and then prompts the model to predict invisible blocks,
which receives a lot of attention in NLP and CV com-
munity [Vaswani, 2017; Devlin, 2018; Bao et al., 2021;
He et al., 2022]. The masking mechanism has also been in-
corporated into VAE, resulting in the development of masked
VAE [Xia et al., 2023; Li et al., 2023; Xu et al., 2023] and
multi-view masked VAE [Ke et al., 2024].

Multi-view masked VAE [Ke et al., 2024] uses pixel-
masking for input images and does not consider view-missing
and sample-noise problems in the generic multi-view setting.
Our approach is a dual-masked VAE, which consists of view-
mask and patch-mask, along with mixture-of-experts learning
and representation disentangling, an innovative amalgama-
tion to enhance model robustness against both view-missing
and sample-noise problems.

3 Methodology
As aforementioned, we propose a DualVAE for multi-view
representation learning. Prior to introducing the details of the
model, we first clarify the problem studied in this paper.

Definition 1 (Problem Statement). Given a multi-view
dataset with 𝑚 views and 𝑛 samples X = {𝑥𝑖 |𝑥1

𝑖
, ..., 𝑥𝑚

𝑖
}𝑛
𝑖=1

in a generic setting, where some data might have unavail-
able views (e.g., 𝑗-view) and corrupted parts (e.g., 𝑥 𝑗

𝑖,𝑘
where

𝑘 denotes dimension), referred to as missing views and noisy
samples respectively, the dataset is used to train a model. The
trained model is then employed to drive multi-view represen-
tations for downstream tasks after deployment, where the test
may also contain view-missing and sample-noisy data.

3.1 Overall Architecture
Figure 1 illustrates the architecture of our DaulVAE, com-
prising three novel components: i) Dual-masked Prediction
(DMP), which processes multi-view data using view-mask
and patch-mask, ii) Mixture-of-Experts (MoE), which mod-
els view-consistent representation, and iii) Representation
Disentangling, which disentangles view-consistent and view-
specific representations. Specifically, we first employ a set of
view-specific encoders {𝐸 𝑖

𝑠}𝑚𝑖=1 to extract view-specific rep-
resentation {s𝑖}𝑚

𝑖=1 which contains noises from correspond-
ing views. We also perform data augmentation on the orig-
inal multi-view data by cropping images into blocks. Then
we use the DMP to mask views and feature patches. Next,
those visible blocks and views are fed into a view-shared en-
coder 𝐸𝑐 to learn a posterior distribution of the latent space
{𝑞(c|𝑥𝑖)} from different views. To mitigate the impact of
missing views, we aggregate these distributions by using a
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Figure 1: An overview of the proposed DualVAE. To clarify, we use a set of multi-view data with three views for illustration. The goal of
this model is to extract view-consistent representation c in the generic multi-view setting for downstream tasks. DualVAE mainly consists of
three modules: Dual-masked Prediction (gray block), Mixture-of-Experts (yellow block), and Disentangling Learning (blue block). The dual-
masked prediction module processes multi-view data by performing view-mask and patch-mask. Mixture-of-Experts aggregates posteriors
learned by the view-shared encoder. Gating scores are generated by the concatenation of posteriors to mitigate the impact of missing views.
Representation disentangling module separates view-consistency and view-specificity which contain sample-noise. Finally, DualVAE utilizes
view-consistency and view-specificity to generate data. [Best viewed in color]

MoE layer. In practice, we reparameterize from the aggre-
gated distribution to obtain view-consistent representation c.
Subsequently, we use a disentangling module by minimizing
the mutual information (MI) between c and {s𝑖}𝑚

𝑖=1 to sepa-
rate representations from noise and enhance the quality of c.
Finally, we concatenate c and {s𝑖}𝑚

𝑖=1 and feed the results into
decoders to reconstruct multi-view data.

Roadmap to Our Model. Given the problem and archi-
tecture, our primary objectives for designing DualVAE are
(1) processing multi-view data using DMP (Section 3.2),
(2) modeling view-consistent representation with MoE
(Section 3.3), and (3) learning disentangled representations
using upper-bound MI (Section 3.4). We now elaborate on
our solutions to each component.

3.2 Dual-masked Prediction
In this work, we aim to extract robust multi-view represen-
tations in the generic settings. We denote that the denoising
autoencoders in the domain of computer vision apply differ-
ent levels of distortion to the input images and then prompt
the model to recover the degraded areas of the images [Vin-
cent et al., 2008]. Following [Vincent et al., 2008], we devise
a view-mask that corrupts multi-view data by discarding one
or more views of the data to enhance robustness against view-
missing. Moreover, noisy samples in the data would degrade
a model in extracting shared information among multi-view
data. To address this challenge, we use a patch-mask, which
has demonstrated its robustness against sample-noise in [He
et al., 2022; Xia et al., 2023] by randomly masking tokens

and reconstructing them later. That is, our masking approach
is a dual-masked model of view-mask and patch-mask.

Specifically, view-mask focuses on the adaptability to
view-missing data. In practice, we randomly select samples
{X𝑘1 ,X𝑘2 , . . . ,X𝑘𝑛 } ⊆ {Xi}𝑛𝑖=1. For each sample, we next
randomly select one view (e.g., the 𝑣-th view) and then mask
its data 𝑥𝑣

𝑘𝑖
. An intuition of our view-mask is that it simu-

lates view-missing scenarios and prompts the model to pre-
dict invisible views so as to enhance robustness against view-
missing. Patch-mask focuses on the noise tolerance of the
model. Since noise-corrupted views share a common latent
space, our motivation here is that the patch-mask has capacity
to shield most noise and force the model to extract more in-
formation gains from data. By leveraging these visible blocks
as inputs to the view-shared encoder 𝐸𝑐, the model then pre-
dicts the original information of incomplete data. We call
such a method Dual-masked Prediction (DMP), formulated
as X̌ = 𝐷𝑀𝑃(X). By training the view-shared encoder, the
data of each view are mapped to the shared latent space, de-
noted as posterior distributions {𝑞𝜃 (c|𝑥𝑖)}, where 𝑥𝑖 is the
output of dual-masked module on 𝑥𝑖 and 𝜃 is trainable param-
eters of the view-shared encoder. Moreover, our dual-masked
model processes multi-view data without incurring additional
computational overhead.

3.3 Mixture-of-Experts Learning
To extract view-consistent representation, a common solution
is to aggregate information from multiple views, referring to
view-fusion. Since the existence of missing views and noisy
samples in multi-view data, view fusion is challenging in



generic settings. Aiming to extract coherent representations
in terms of the shared latent spaces, we propose to mitigate
the interference caused by missing views. Our main idea is to
reduce the weight coefficient of the distribution from missing
views. To this end, we saddle the model with a Mixture-of-
Experts (MoE) layer.

Specifically, as the missingness of samples and noniden-
tically distributed noises from multiple views, the posterior
𝑞(c|𝑥𝑖) generated by the view-shared encoder might not be
optimal. To address this challenge, we assign each view an
expert (as shown in Figure 1), to process the posterior from
each view, namely, transforming the posterior and further
learning on the transition space to the shared latent space. In
our framework, each expert is implemented by a Multilayer
Perceptron (MLP) parameterized by 𝜙𝑖 . The transformed
posteriors are expressed as 𝑞𝜙𝑖 (c|𝑥𝑖) = 𝑀𝐿𝑃𝜙𝑖 (𝑞𝜃 (c|𝑥𝑖)).
Then we have

𝑞𝜙 (c|X̌) = 𝑀𝑜𝐸 ({𝑞𝜃 (c|𝑥𝑖)})
∝
∑︁

𝛼𝑖 · 𝑞𝜙𝑖 (c|𝑥𝑖)
(1)

where X̌ = 𝐷𝑀𝑃(X). 𝜶 = {𝛼𝑖}𝑚
𝑖=1 are gating scores gener-

ated by a gating network as below

𝜶 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝐺𝑎𝑡𝑒𝛾 ({𝑞𝜃 (c|𝑥𝑖)}𝑚𝑖=1)) (2)

where 𝛾 denotes the parameters of the gating network. The
intuition here is that by dynamically reducing gating scores
𝛼𝑖 of the missing views, the model can mitigate their impact
to improve the quality of view-consistent representations for
view-missing and sample-noise data. In addition, to further
enhance the model’s adaptability, we use a normal Gaussian
distribution to model the prior of view-consistent representa-
tion, formulated as 𝑝(c) = N(0, I). Moreover, as the random
sampling from posterior 𝑞𝜙 (c|X̌) cannot directly propagate
gradients, we reparameterize this distribution to obtain view-
consistent representation c, formulated as follows

𝑞𝜙 (c|X̌) = N(𝜇c, 𝜎c
2) = 𝜇𝑐 + 𝜖𝑐𝜎𝑐 (3)

where 𝜇𝑐 and 𝜎𝑐 are trainable parameters and 𝜖𝑐 ∼ N(0, I).

3.4 Representation Disentangling
Due to the diversity of multi-view data, the noise distributions
in different views are also distinct. As the noises are often ir-
regular and random, enhancing the noise-tolerance of MvRL
is challenging and non-trivial. To address this challenge, our
insight is that view-specific representation might contain both
view-specific features and sample noise, as shown below

𝑝(s𝑖) = 𝜉 (𝑠𝑖 , 𝜖 𝑖) (4)

where 𝑠𝑖 denotes view-specific information, 𝜖 𝑖 denotes
sample-noise, and 𝜉 denotes a joint distribution of them.
That is, multi-view data contains three types of informa-
tion: view-consistent information, view-specific information,
and distinct noise. As shown in Section 3.2, we proposed a
novel dual-masked prediction to improve the quality of view-
consist representation, where the masked content might be
view-specific information or noisy data. We now introduce
how to disentangle them.

As mentioned above, suppose we have extracted a view-
consistent representation, we then propose to explore the re-
maining information across views. Our motivation is that
view-consistency and view-specificity should be indepen-
dent. We design a disentangle module by minimizing the
upper-bound of mutual information between them. Specif-
ically, as illustrated in Figure 1, we deploy a set of view-
specific encoders {𝐸 𝑖

𝑠}𝑚𝑖=1 to tackle each views, which extract
view-specific representation {s𝑖}𝑚

𝑖=1. We formulate the poste-
rior distributions of s𝑖 as 𝑞𝜑𝑖 (s𝑖 |𝑥𝑖), where 𝜑𝑖 denotes train-
able parameters of 𝐸 𝑖

𝑠 . Similarly, we employ a Gaussian dis-
tribution to model view-specific representation, formulated as
𝑝(s𝑖) ∼ N (0, I).

Then, the view-consistent representation c and view-
specific representation {s𝑖}𝑚

𝑖=1 are the inputs of disentangling
module. After that, we concatenate view-consistent repre-
sentation and view-specific representation, denoted as z𝑖 =

[c, s𝑖]. Finally, we deploy a set of decoders {𝐷𝑖}𝑚
𝑖=1 to gener-

ate data, where z𝑖 is the input of the decoder 𝐷𝑖 .
Based on Eq. (4) and the chain rule for mutual information,

we have
𝐼 (s𝑖; c) = 𝐼 ((𝜖 𝑖 , 𝑠𝑖); c)

= 𝐼 (𝜖 𝑖; c) + 𝐼 (𝑠𝑖; c|𝜖 𝑖)
≥ 𝐼 (𝜖 𝑖; c)

(5)

which shows that we can disentangle c and 𝜖 𝑖 by minimizing
the upper bound of mutual information between c and s𝑖 to
address noise data. The mutual information between s𝑖 and c
is formulated as follows

𝐼 (s𝑖 , c) = E𝑝 (s𝑖 ,c) [log
𝑝(s𝑖 |c)
𝑝(s𝑖) ]

≤ E𝑝 (s𝑖 ,c) [log
𝑝(s𝑖 |c)
ℎ(s𝑖) ]

= KL(𝑝(s𝑖 |c) | |ℎ(si))

(6)

where ℎ(s𝑖) denotes the variational marginal approximation
of s𝑖 . However, the upper bound of Eq. (6) is difficult to es-
timate. Following CLUB [Cheng et al., 2020], we use an ap-
proximation without assuming a prior. CLUB approximates
𝑝(s𝑖 |c) using a variational distribution 𝑞𝜓𝑖 (s𝑖 |c), where 𝜓𝑖

denotes the parameters of the 𝑖-th estimator. Then, we define
our disentangling loss function as

L𝑑 =

𝑚∑︁
𝑖=1

L𝑖
𝑑 (7)

where L𝑖
𝑑

is the loss of the 𝑖-th estimator, formulated as

L𝑖
𝑑 =𝐼𝐶𝐿𝑈𝐵 (s𝑖; 𝑐)
=E𝑝 (s𝑖 ,c) [log 𝑞𝜓𝑖 (s𝑖 |c)]−

E𝑝(c)E𝑝 (s𝑖 ) [log 𝑞𝜓𝑖 (s𝑖 |c)]
(8)

where 𝐼𝐶𝐿𝑈𝐵 (s𝑖; c) ≥ 𝐼 (s𝑖 , c) as proved in [Cheng et al.,
2020].

We then concatenate view-consistent representation and
view-specific representations to generate z𝑖 , i.e., z𝑖 = [c, s𝑖],



whose posterior is defined as 𝑞𝜙,𝜑𝑖 (zi |{𝑥𝑖}). Similar to view-
consistent representation, we yet reparameterize the posteri-
ors of view-specific representation as follows

𝑞𝜑𝑖 (s𝑖 |𝑥𝑖) = N(𝜇𝑖𝑠 , (𝜎𝑖
𝑠)

2) = 𝜇𝑖𝑠 + 𝜖 𝑖𝑠𝜎𝑖
𝑠

(9)

where {𝜇𝑠𝑖 }, and {𝜎𝑠𝑖 } are trainable parameters in neutral
networks and 𝜖 𝑖𝑠 ∼ N(0, I). The sampling results from the la-
tent distribution are then fed into decoders to reconstruct sam-
ples denoted as {𝑥𝑖}𝑚

𝑖=1. The likelihood of the reconstructed
samples of 𝑖-th view is shown as follows

𝑥𝑖 = 𝑝(𝑥𝑖 |z𝑖). (10)
In practice, we adopt vanilla VAE to build a base

model [Kingma, 2013]. The reconstruction loss L𝑔 with the
evidence lower bound (ELBO) can be expressed as:

L𝐸𝐿𝐵𝑂 (𝑥𝑖) =E𝑞
𝜙,𝜑𝑖

(z𝑖 | {𝑥𝑖 }) [log 𝑝(𝑥𝑖 |z𝑖)]−

KL[𝑞𝜙,𝜑𝑖 (z𝑖 |{𝑥𝑖})∥𝑝(z𝑖)] .
(11)

Suppose c and s𝑖 are conditionally independent, then we
have 𝑞(zi |{𝑥𝑖}) = 𝑞(c, s𝑖 |{𝑥𝑖}) = 𝑞(c|{𝑥𝑖})𝑞(s𝑖 |𝑥𝑖). The KL
divergence in Eq. (11) is then formulated below

KL
[
𝑞
(
z𝑖 |{𝑥𝑖}

) 𝑝 (z𝑖 ) ] = KL
[
𝑞
(
c, s𝑖 |{𝑥𝑖}

) 𝑝 (c, s𝑖 ) ]
= E𝑞(c,s𝑖 | {𝑥𝑖 })

[
log

𝑞
(
c, s𝑖 |{𝑥𝑖}

)
𝑝 (c, s𝑖)

]
= E𝑞(c | {𝑥𝑖 })E𝑞(s𝑖 |𝑥𝑖)

[
log

𝑞
(
c|{𝑥𝑖}

)
𝑞
(
s𝑖 |𝑥𝑖

)
𝑝 (c) 𝑝 (s𝑖)

]
= E𝑞(c | {𝑥𝑖 })E𝑞(s𝑖 |𝑥𝑖)

[
log

𝑞
(
c|{𝑥𝑖}

)
𝑝 (c) + log

𝑞
(
s𝑖 |𝑥𝑖

)
𝑝 (s𝑖)

]
≈ KL

[
𝑞
(
c|{𝑥𝑖}

) 𝑝 (c)] + KL
[
𝑞
(
s𝑖 |𝑥𝑖

) 𝑝 (s𝑖 ) ] .
(12)

However, KL[𝑞(c|{𝑥𝑖}) | |𝑝(c)] cannot be computed di-
rectly. By Eq. (1) and dropping 𝜙𝑖 for simplicity, we have

KL(𝑞(c|X̌)∥𝑝(c)) = E𝑞 (c |X̌)

[
log

𝑝(c|X̌)
𝑝(c)

]
∝ E𝑞 (c |X̌)

[
log

∑
𝛼𝑖 · 𝑞(c|𝑥𝑖)
𝑝(c)

]
.

(13)

By Jensen’s inequality, we can derive

E𝑞 (c |X̌)

[
log

∑
𝛼𝑖 · 𝑞(c|𝑥𝑖)
𝑝(c)

]
≥

𝑚∑︁
𝑖=1

𝛼𝑖 · E𝑞 (c | �̌�𝑖 )

[
log

𝑞(c|𝑥𝑖)
𝑝(c)

]
=

𝑚∑︁
𝑖=1

𝛼𝑖 · KL(𝑞(c|𝑥𝑖)∥𝑝(c)).

(14)
Then, the ELBO of the model can be reformulated as

L𝐸𝐿𝐵𝑂 =
∑︁

L𝐸𝐿𝐵𝑂 (𝑥𝑖)

∝
𝑚∑︁
𝑖=1

E𝑞(z𝑖 |{𝑥𝑖 })
[log 𝑝(𝑥𝑖 |z𝑖)]−

𝑚∑︁
𝑖=1

KL
[
𝑞
(
s𝑖 |𝑥𝑖

)
∥𝑝

(
s𝑖
) ]
−

KL(𝑞(c|{𝑥𝑖})∥𝑝(c))

(15)

Objection Function. Formally, we have the total loss func-
tion of our DualVAE:

L𝑙𝑜𝑠𝑠 = L𝐸𝐿𝐵𝑂 − L𝑑 . (16)

4 Experiments
4.1 Experimental Setup
Datasets. To evaluate the proposed model, we conduct ex-
periments on four publicly available multi-view datasets. The
statistics of each dataset are shown in Table 1.

Dataset Samples Views Classes

COIL-20 [Nene et al., 1996b] 1,440 3 20
COIL-100 [Nene et al., 1996a] 7,200 3 100

E-MNIST [Liu and Tuzel, 2016] 70,000 2 10
PolyMNIST [Palumbo et al., 2023] 70,000 5 10

Table 1: Data statistics of the benchmark datasets.

Baselines. We compare DualVAE against the following
three types of baseline methods:

• Single-view VAE: 𝛽-VAE [Higgins et al., 2017], and
Joint-VAE [Dupont, 2018].

• Multi-view non-VAE: SCM [Luo et al., 2024], and
MFLVC [Xu et al., 2022].

• Multi-view VAE: MVAE [Wu and Goodman, 2018],
Multi-VAE [Xu et al., 2021], MIB [Federici et al.,
2020], and MRDD [Ke et al., 2024].

For those sing-view VAE methods, we choose the best re-
sults among all views. For the multi-view VAE methods that
are tailored for two views, we select the first two views as
inputs. For other baseline methods, we ran their original sys-
tems with the settings as they suggested.

Implementation Details. We deployed the proposed model
and baselines using Pytorch 2.3.1 and ran experiments on
NVIDIA TITAN GPUs with 24GB of memory in Ubuntu
20.04.1 LTS. We utilize Adam optimizer with weight de-
cay and set training epochs as 200. Moreover, we set
the initial learning rate to 1 × 10−4 and adopt cosine an-
nealing during the training. Following [He et al., 2022;
Ke et al., 2024], the default patch-mask ratio is 0.7. We then
initially set view-mask ratio as 0.3. Both the dimensions of
view-consistent representation and view-specific representa-
tion are 10. We ran 10 times on each evaluation and recorded
the average value and standard deviation.

4.2 Experimental Results
Task Settings. We evaluate each model with clustering and
classification tasks. For clustering, we implement 𝐾-means
algorithm on the learnt representations. For classification, we
employ support vector classification (SVC). To have a com-
prehensive evaluation, we evaluate each model under differ-
ent settings of View-Missing Ratio (VMR) and Sample-Noise
Ratio (SNR). The VMR is defined as 𝑉𝑀𝑅 = 𝑘/𝑁 , where 𝑁
is the size of all samples and 𝑘 denotes the number of samples
randomly selected to remove one of the views. For SNR, we
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Figure 2: Clustering & Classification performance comparison with different View-Missing Ratio (VMR) settings on four datasets.
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Figure 3: Clustering & Classification performance comparison with different Sample-Noise Ratio (SNR) settings on four datasets.

added salt-and-pepper noise into four datasets with varying
degrees of intensity, denoting the ratio of pixels that are cor-
rupted by noises. we vary the values of VMR and SNR from
0% to 90%, with an interval of 10%.

We use Accuracy (ACC) as the metric to evaluate the per-
formance of each model for both clustering and classification
tasks on four datasets.

Overall Evaluation. The evaluation results in terms of
ACC on each dataset with different VMR and SNR settings
are shown in Figure 2 and Figure 3. From the results, we have
the following observations:

• The proposed DualVAE is superior to baseline methods
and achieves promising performance even on the heavy
missing settings. DualVAE performs well with the in-
creasing of VMR. The results demonstrate that our Du-
alVAE has capability to handle view missingness.

• All the baseline models suffer performance degradation
as the SNR increases. In contrast, DualVAE exhibits sig-
nificant robustness and achieves superior performance.

• The results in the above two experiments clearly show
that the proposed DualVAE model is effective against
view-missing and sample-noise problems.

In addition, to further demonstrate the performance of the
proposed DualVAE in a generic setting, we examine the
model under a mixed setting of VMR and SNR, where both
variables range from 0% to 80% with an interval of 20%.
The results are shown in Figure 4. From the figure, we can
see that for each fixed SNR, the model has small variation
as VMR increases, which demonstrates its robustness against
view-missing problems. The model also exhibits robust per-
formance against noise. The results show that our DualVAE
is robust in generic multi-view settings.
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Figure 4: Clustering performance with different View-Missing Ratio
(VMR) and Sample-Noise Ratio (SNR) settings on four datasets.

Ablation Study. To explore the framework of DualVAE,
we conduct an ablation study by analyzing the effectiveness
of the devised DMP (Section 3.2), MoE (Section 3.3), and
disentanglement (Section 3.4). We remove each of them from
the framework and conduct clustering tasks on four datasets
with the setting of VMR=0.5 and SNR=0.1. Particularly, we
exclude MoE by replacing linear layers with it. Experimental
results of the ablation study are shown in Table 2. From the
results, we see that the removal of any component leads to a
degradation in performance. This indicates that all compo-
nents in our framework are essential. As for the three compo-
nents, DMP contributes more than the other two.

Methods COIL-20 COIL-100 E-MNIST PolyMNIST

w/o DMP 41.09 46.42 28.92 86.68
w/o MoE 65.57 52.96 40.17 81.35
w/o L𝑑 63.52 55.48 38.01 64.96
DualVAE 72.13 76.10 41.62 92.98

Table 2: Ablation study on the components of DualVAE. ACC in
clustering with VMR=0.5 and SNR=0.1. Best scores are in bold.

Parameter Study. Since the proposed dual-masked model
contains two hyperparameters, i.e., view-mask ratio and
patch-mask ratio, we now explore how they influence the per-
formance of the model. We conduct grid search experiments
in the setting of VMR=0.5 and SNR=0.1, where view-mask
ratio and patch-mask ratio vary from 0% to 90% with a 10%
interval. First, we conduct classification on four datasets with
different view-mask ratios by fixing the patch-mask ratio as
70%. The results are shown in Figure 5. It is worth noting
that a proper view-mask ratio can significantly enhance the
performance of the model, such as 30%. Then we fix the
view-mask ratio as 0.3, and vary the patch-mask ratio for fur-
ther exploration. The results are shown in Figure 6. From
this figure, we can see that a higher patch-mask ratio may
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Figure 5: Parameter study on view-mask ratio. ACC in classifi-
cation with the setting of VMR=0.5 and SNR=0.1.
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Figure 6: Parameter study on patch-mask ratio. ACC in classifi-
cation with the setting of VMR=0.5 and SNR=0.1.

achieve better performance. In addition, for small datasets
such as E-MNIST and COIL-20, a high-intensity patch-mask
would lead to the loss of representative information, result-
ing in performance degradation. That is, both view-mask and
patch-mask contribute to the robustness of multi-view repre-
sentations learned by the proposed model.

5 Conclusion
In this paper, we are concerned with the robustness of multi-
view representation learning in a generic multi-view setting,
particularly for view-missing and sample-noise problems. To
this end, we proposed a novel Dual-masked Variational Au-
toEncoders (denoted as DualVAE), which is a unified frame-
work to extract robust representations for multi-view data.
The DualVAE exhibits an innovative amalgamation of dual-
masked prediction, mixture-of-experts learning, representa-
tion disentangling, and a joint loss function in wrapping up
all components. Extensive experimental results demonstrate
the superior robustness of the proposed method compared to
baseline methods in the settings of different view-missing ra-
tios and sample-noise ratios.
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